SAND94-1100 Distribution
Unlimited Release Category UC-705
Printed April 18, 2000 11:57 am

CUBIT Mesh Generation
Environment
Volume 1: Users Manual

CUBIT Development Team?
Sandia National Laboratories
Albuquerque, New Mexico 87185-0441

Abstract

The CUBIT mesh generation toolkit is a two- and three-dimensional finite ele-
ment mesh generation tool which is being developed to pursue the goal of ro-
bust and unattended mesh generati@ffectively automating the generation

of quadrilateral and hexahedral elemenSUBIT generates surface and vol-
ume meshes for solid model-based geometries; these meshes are used for finite
element analysis applications. A combination of techniques including paving,
mapping, submapping, sweeping, and various other algorithms being devel-
oped are available for discretizing the geometry into a finite element mesh. The
software is used for both production mesh generation and as a testbed for new
algorithms. While CUBIT is specifically designed to reduce the time required
to create all-quadrilateral and all-hexahedral meshes, it also provides the capa-
bility to generate hex dominant and tetrahedral meshes. This manual is de-
signed to serve as a reference and guide to creating finite element models in the
CUBIT environment.

This manual documents CUBIT Version 4.0.

1. Seethe next page for the members of the CUBIT Development Team.

Exceptional Service in the National Interest

v Cubit Development Team Membership

Sandia National Laboratories, Albuquerque New Mexico

Robert A. Kerr Parallel Computing Sciences

Patrick Knupp Parallel Computing Sciences

Robert W. Leland Manager, Parallel Computing Sciences
Darryl J. Melander Parallel Computing Sciences

Scott A. Mitchell Parallel Computing Sciences

Steven J. Owen Parallel Computing Sciences

Jason F. Shepherd Parallel Computing Sciences
Timothy J. Tautges Parallel Computing Sciences

David R. White Parallel Computing Sciences

Brigham Young University, Provo, Utah

Steve Benzley Professor of Civil and Environmental Engineering
Michael J. Borden Student in Department of Civil and Environmental Eng.
Steven R. Jankovich Student in Department of Mechanical Engineering

University of Wisconsin

Jason Kraftcheck Student in Department of Mechanical Engineering

Yong Lu Student in Department of Mechanical Engineering
Contractors

Ray J. Meyers Contractor, Provo, Utah

Michael Stephenson Contractor, Provo, Utah

Caterpillar Inc.

Steve Storm Corporate Information Services

Eric Nielsen Corporate Information Services

Rammagy Yoeu Corporate Information Services

Table of Contents

v Table of Contents

Vv Cubit Development Team Membership
V Table of CoNtents

v List of Figures .

v List of Tables ..

Chapter 1: Getting Started

v Introduction . . .

v How to Use This Manual i

v Features

Geometry Creation, Modificationand Healing
Non-Manifold Topology.t e
Geometry Decomposition.
Mesh Generation.t
Boundary Conditions
Element Types
Graphics Display Capabilities.
Command Line Interface
Hardware Platforms

Vv Executing CUBIT
Execution Command SyntaxX.oo ittt
User Environment Settings. i e
Initialization File.

VYV CUBITMailing ListS e e e

v Problem Reports and Enhancement Requests

Chapter 2: Tutorial . .

¥ Introduction . ..

v Overview

v Step 1: Beginning ExXecution
Vv Step 2: Creatingthe Brick
v Step 3: Creating the Cylinder i
v Step 4: Adjusting the Graphics Display
v Step 5: Formingthe Hole
Vv Step 6: Setting Interval Sizes
Vv Step 7:Surface Meshing
Vv Step 8:Volume Meshing
v Step 9: Inspectingthe Model
v Step 10: Defining Boundary Conditions
v Step 11: Exportingthe Mesh

v Congratulations

Document Version 4/18/00

CUBIT Reference Manual V

Xiii
XV

NN -
BWWyww N

SANT N

o O

10
10
11
12
12
13
14
15
16
17
17

Table of Contents

Chapter 3: Environment e

Y INtrodUCHioN
¥ Command SYNTaX
Vv Executing CUBIT
Execution Command Syntax.ottt
Environment Variables.
Initialization File.
V¥ Session Control
v Command Recording and Playback
Journal File Creation & Playback.
Automatic Journal File Creation. i
Y RES At .. .
Vv Entity Specification
v Command Line Editingo
¥ GraphiCs . .
Updatingthe Display e
GraphicS MOdEesSo
Drawing and Highlighting Entities.
Drawing Other Objects 31
Mouse-Based View Navigation
Changing the View Transformation Button Bindings 33
Navigational Drawing Mode 33
Saving and Restoring Views 34
Selecting Entities withthe Mouse.
Information About the Selection 36
Mesh SliCINgo
Entity Labels.
COlOrS v
Geometry and Mesh Entity Visibility. L.
Graphics Camera.
Graphics WINdOWS e
Hardcopy OULPUL. oo e
Miscellaneous Graphics Options
Vv Graphics Enhancements
Entity Parsing
v Listing Information
List Model Summary e
LiSt GEOMELIYo
LISt MesSh ...
List Special Entities
List CUBIT Environment e e
v Obtaining Help

Chapter 4: Geometry

Vi

19

19
19
21
21
22
22
23
23
23
24
25
25
28
29
29
29
31

32

35

38
38
39
41
41
44
45
45
49
50
50
50
51
51
52
52
58

59

CUBIT Reference Manual Document Version 4/18/00

Table of Contents

Y INtrodUCHioN 59
v CUBIT Geometry Model Definitions 60
TOPOIOgY . . o 60
Non-Manifold Topology. 60
v Automatic Detail SUppression i 60
V. Geometry Creation 62
Geometric Primitives 63
Importing Geometry 65
Bottom-Up Geometry Creation.t 66
Vv Geometry Transforms 69
vV Geometry BOOleans 71
v Geometry DeCOmpOSItiON 73
Web CUuttingo 73
Split PeriodiC. 75
V Virtual GeOMEtrY: . . 75
v Automatic Geometry Decomposition 79
YV Geometry Mergingottt 80
MEIgINg. . . oottt 80
Examining Merged Entities 81
Merge ToleranCe. e 81
Using Geometry Merging to Verify Geometry. 81
¥ GEOMELIY GIrOUPS . . v ettt e e et e e e e e 82
V Geometry Attributes 82
Entity Names. e 82
Persistent Attributes 83
VY EXporting Geometry 85
v New Geometry Commandsttt 85
¥ Model ImMpOort/EXPOrto 98
W G OUPS o ottt e 100
Chapter 5: Mesh Generation e 115
Y INrodUCHioN 115
Element Types 115
Mesh Generation ProCeSSo oot e 116
Vv nterval ASSIgNMENt 117
Interval FIrmness 117
Explicit Specification of Intervals 117
Automatic Specificationof Intervals 118
Interval Matching 119
Periodic Intervals 120
Relative Intervals 120
¥ Meshing SChemes 121
Bias, Dualbias.o 121
CirCle. . 123

Document Version 4/18/00 CUBIT Reference Manual Vii

Table of Contents

viii

(0] o)V 124
CUIVAUI. . . . e 125
DICE. . . e 125
Equal. . .. 128
HexToVoid 128
HeXT el . o e e 129
Hole. . . e 129
MaPPING . . oot 130
MITOr . o e 132
PaVe. . . 133
Pentagon Primitive e 136
Plastering.o 137
QT e 138
SpPhere . . 139
StretCh . . . 140
SUDMAP . . . 141
S BB & it i e e 143
TetMesh, TetINRIA, TetMSC e 146
Tetrahedron. e 147
THEX . o 148
TransSitioN 149
TrHangle. . . 151
THMaAD. . . oo 152
.. 153
TriMesh, TriAdvance, TriIMSC e 153
T PAVE . .o 155
Whisker Weavingo 156
v Automatic Scheme Selection i 157
Notes: Surface Auto Scheme Selection 157
Notes: Volume Auto Scheme Selection 158
General NOtESo e 158
¥ Mesh-Related TOPICSo oo it e 159
Grouping Sweepable Volumes 159
FullHex versus NodeHex Representation. 160
Surface VerteX TYPeS . . .ot 160
Preview Mesh e 161
VY Mesh Smoothing 161
Smooth Scheme: Centroid Area Pull 163
Smooth Scheme: Equipotential. 163
Smooth Scheme: Laplacian. 164
Smooth Scheme: Optimize Area. 164
Smooth Scheme: Optimize Condition Number 164
Smooth Scheme: Optimize Jacobian 165
Smooth Scheme: Optimize Untangle 165
Smooth Scheme: Randomize 166
Smooth Scheme: WiInslow e 166

CUBIT Reference Manual

Document Version 4/18/00

Table of Contents

VY Mesh Deletion e 166

v Node and NodeSet Repositioningt 167

v Mesh Importing and Duplicating 167
Importing mesh froman externalfile............ 168
Duplicatingmesh 169

v Mesh Quality ASSESSMENt oot 169
Metrics for Triangular Elements. 169
Metrics for Quadrilaterals. 170
Metrics for Tetrahedral Elements. 172
Metrics for Hexahedral Elements. 173
Details on Robinson Metrics for Quadrilaterals. 174
Command SYNtaX 175
Example OUtput 176
Controlling Mesh Quality i 177

Vv MeshValidity 178

Chapter 6: Finite Element Model Definition and Output 179

Y INtroduCtion 179

v Finite Element Model Definition 179
ElementBlocks. 179
NOdESELS 180
SIdESEtS . . . 180
Element Types 180

v Element Block Specification 181

Vv Nodesets and Sidesets 181
Nodeset Associativity Data. i 182

v Exodusll Model Title 183

v Transforming Mesh Coordinates 183

v Exporting the Finite ElementModel 184

¥ REefereNCeS 185

Appendix A: Examples 187
Y INtrodUCtion 187

¥ General COMMENTS oot e e 187

v Simple Internal Geometry Generationt 188

Vv Octant of Sphere 190

¥V BOX Beam 190

v Thunderbird 3D Shell 193

v Advanced Tutorial 196

v Exodusll File Specification 200
Element Block Definition Examples 200

Surface Mesh Only 200

Document Version 4/18/00 CUBIT Reference Manual iX

Table of Contents

Two-Dimensional Mesh 201

Appendix B: Available Colors e, 203
Appendix C: CUBIT Licensing, Distribution and Installation 207
Appendix D: Element Numbering 213
Y INrodUCHiON 213
VY Node NUMDEING e e e e 213
Vv Side NUMDbBEINGo 213
Appendix E: Adaptive Meshing 215
VINtrodUCHioN 215
Appendix FiIndexX 219

X CUBIT Reference Manual Document Version 4/18/00

Table of Contents

Document Version 4/18/00 CUBIT Reference Manual Xi

Table of Contents

Xii CUBIT Reference Manual Document Version 4/18/00

CHAPTER

v List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11.:
Figure 2-12:
Figure 2-13:

Figure 3-1:
Figure 3-2:

Figure 3-3:

Figure 3-4:
Figure 4-1:
Figure 4-2:

Figure 4-3:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:
Figure 5-17:
Figure 5-18:

Document Version 4/18/00

Geometry for Cube with Cylindrical Hole.................oooiiiiiiiiii 8
Generated Mesh for Cube with Cylindrical Holeccooeciiiiiiiiiieee, 9
CUBIT STAITUP SCIEEIN. ..eeuuiieeeeeiiie e e ettt e ettt e e e e e et e e e e e e e rbi e e e e eeesaneeeeas 9
DISplay Of DICK. ..o 10
[T Ted Q=TT 03 [T o = U 11
View from different perSPeCtiVe. ... 11
Brick after subtracting CylINAEr. ... 12
Geometry with curve labeling turned oNn.oooviiiiiiiiiiiiee e, 13
Surface meshed With PaVING.eiiiii e 14
Output from liSting VOIUME 3.....eiiiiiiiiiiiiiieee e 15
Wireframe view of volume mesh............ooooiiii e 15
Hiddenline (left) and shaded (right) view of volume mesh. 16
Quality table from volume 3's heX MeSh.........ci 17
Examples of three most common viewing modes in CUBIT; Wireframe (left);
Hiddenline (center); Smoothshade (right).ouuiiiiiiiii, 30
Examples of other viewing modes in CUBIT; Flatshade (top left); Polygonfill(top
right); Painters(bottom left); Truehiddenline (bottom right). 30

A meshed cylinder shown with graphics facets off (left) and graphics facets on
(right); note how geometry facets on the curved surface obscure mesh edges when

fACELS Are Off ..o 31
Schematic of From, At, Up, and Perspective Angle............iiiiiiiiieeneneennn. 42
Geometry primitives available in CUBIT............coooviviiiiiiiiciiieee e 63

Automatic decomposition, plus one manual webcut, makes the model sweepable.
79

Merging two manifold surfaces into a single non-manifold surface. 80
Useful relative [€NgthS.ooeeiiiii e 120
Equal and biased curve Mmeshing.........cccoooieiiiiiiiiiiiiiie s 123
Circle Primitive MESNue e 123
Simple DIiCING EXAMPIEuuueiiii i 126
Example of Mesh Scheme Hole.............ooooiii 130
Scheme Map Logical PrOPErtieSccooiiiiiiiiiiiiiiiiiiiiie e 131
Volume mapping of a 5-surfaced VOIUME..........cccooeeviiiiiiieiiiiieece 132
Surface 1 copied/mirrored onto SUMACe 2.........ccevviiiiiiiiiiiiiiee e 133
Map (left) and Paved (right) Surface Meshes............cccceeiiiiiiiiiiiiiicccee, 135
Plastering EXAMPIES......coii it 138
Example of Mesh Scheme Sphere ..., 140
Quadrilateral and hexahedral meshes generated by submapping 141
Scheme Submap Logical Propertiesooovvvveiiiiiiiiiiiiiie e 142
Periodic Surface Meshing with Submapping.............ccccciiiiiiiiiiiiee, 143
Sweep VOoIUME MESNINGuuuiiiiiiiiiiiiiiie e 143
Multiple Surface Sweep Volume Meshing...........ccooviriiiiiiiiiiiiiiiiee e, 144
MultisSwept VOIUME MESNuiii e 146
Tetrahedral mesh generated with scheme TetMesh..............ccco i, 148

CUBIT Version 3.0 Reference Manudliii

CHAPTER

Figure 5-20:
Figure 5-19:

Figure 5-21.:
Figure 5-22:
Figure 5-23:
Figure 5-24:
Figure 5-25:
Figure 5-26:
Figure 5-27:

Figure 5-28:
Figure 5-29:

Figure 5-30:
Figure 5-31.:

Figure A-1:
Figure A-5:
Figure A-6:
Figure A-7:
Figure D-1:
Figure D-2:

Xiv

CUBIT Version 3.0 Reference Manual

Conversion of a tetrahedron to four hexahedra, as performed by the THex
AIGONTNM. L. e ————— 149

Sphere octant hex meshed with scheme Tetrahedron, surfaces meshed using
SCheme THAaNGIEooo i 149

A cylinder before and after the THex algorithm is applied. 150

Scheme Transition Triangle and Half_circle...........ccooeeiiiiiiis 151

Scheme Transition Three_to_one and TWO_t0_0ONe........cccceevvvvevvvennnniinnnnennn. 151

Scheme Transition Convex_corner and Four_to twoccceevvevvvviivinnnn. 152

Meshes generated with scheme QTRI (top) and TriAdvamce (bottom)........ 155

Some simple Whisker Weaving meshes with good quality.................c......... 156

Non-trivial model meshed using automatic scheme selection (part of the model is

not shown in order to reveal the internal structure of the model)............ 159

Angle Types for Mapped and Submapped Surfaces: An End vertex is contained in
one element, a Side vertex two, a Corner three, and a Reversal four.160
Influence of vertex types on submap meshes; vertices whose types are changed are
indicated above, along with the mesh produced; logical submap shape shown

lllustration of Quadrilateral Shape Parameters (Quality Metrics).................. 175
lllustration of Quality Metric Graphical OUIPUL...........cccuevvviiiiiiiiiiiiiieeeeeee, 177
Geometry for Cube with Cylindrical HoOle..............oovvviiiiiiiiiieeeeeeeeeeee, 189
Sandia Thunderbird 3D Shell ... 194
Geometry of Advanced TUtorialuueeiiiiiiiiiiiiii e 197
Mesh of Advanced Tutorial Problem.............cccoiiiiiiiiiiiieeee 199
Local Node Numbering for CUBIT Element TYPesS........ccouvuviveiiiiiiiieeeeeeeenn. 213
Local Side Numbering for CUBIT Element Typescoovvvviiiiiiivvviiinnnnee. 214

Document Version 4/18/00

Biei]

v List of Tables

Table 3-1:

Table 3-2:

Table 3-3:
Table 3-4:
Table 3-5:
Table 3-6:
Table 3-7:
Table 3-8:
Table 3-9:

Table 3-10:
Table 3-11:
Table 3-12:
Table 3-13:
Table 3-14:
Table 3-15:
Table 3-16:
Table 3-17:
Table 3-18:
Table 3-19:
Table 3-20:
Table 3-21:

Table 4-1:
Table 4-2:

Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:
Table 5-7:
Table 5-8:
Table 5-9:
Table 6-1:
Table 6-2:
Table A-1:
Table B-1:

Document Version 4/18/00

Parsing of group commands; Group 1 consists of Surfaces 1-2 and Curve 1; Surfac-

es 1 and 2 are bounded by Curves 2-5. 27
Precedence of “Except” and “In” keywords; Group 1 consists of
Surfaces 1-2 and Curve 1. 27
Command Line Interface Line Editing KeYS.........ccooivviiiiiiiiiiiiiiiii e, 28
Default Mouse FUNCION MapPINgScoooeeiieeiiiiiiiiieiiiiiiee e eeeeeeeeeees 32
Picking and key press operations on the picked entities...............cccccvvvnnnnee. 35
Mesh slicing key press Operations.ccceeeeeeieivveeeeeiiiiiieee s e e e e e e e eeeeeeeeannens 38
Journal file for List EXamMPIES.........uuiiiiiiieiiiiiieeeeiie e 53
‘List Model’ or ‘List Totals’ EXample............oeeveiiiiiiiiiiiiiiiie 54
‘LISt NAmMES’ EXAMPIE .. .ot e e e e e e e 54
‘List Surface [range] 1ds’ EXamples ... 54
Using ‘List’ for Querying CONNECHIVILY............uuuuriiiiiiiiiieieieeee e 55
‘List Group Mesh Detail’ Example..............ooviiiiiiiiiiieeeeceeeeeceeee 55
‘List Surface Geometry’ EXamPIeuuuiiiiiiiiiie e 56
‘LISt CUIVE EXAMPIE....ouiiiiiiiiiiiiiiiie e 56
‘List <entities> X' EXaMPIE.oovvvviiiiiiiie e 57
‘LISt HEX EXAMPIES ... 57
‘LISt BIOCK EXAMIPIE ...t 57
‘List SideSet’ EXaMPIEvuvuuiiiiiiiiii e 57
‘List NodeSet EXaMPIE.......cooiiiiiieiieeiie e 58
Sample Output from ‘List Settings’ Commandevveiiiiiiiiiiieeeeeeenenne. 58
Help on Volume & Lab€l..........cooooo i 58
Surface EXtension RESUILS..........oooiiiiiiii e 68
Attribute types currently implemented in CUBIT. All attributes are set to automat-
ically read and write from and to ACIS model. 84
Basic element designators and elements corresponding to geometry entities. 116
Relative SIZe faCtOrS.cooiiiieeeee e e e e e e e e e e eeaenees 118
Listing oOf 10giCal SIAEScooviieeiieccce e e e e e 131
Description of Triangular Quality MEasUIescccooeviieeeiiiieiieiiiiiiiiicenn 169
Description of Quadrilateral Quality MeasUres...........ccccceeevieiieeeeeeenreeeeeeennnnns 171
Description of Tetrahedral Quality Measures...........cccoovvvvvvvviiviiiiiiiie e 172
Description of Hexahedral Quality Measures.............ooovvviviiiiiiiiciiiiieee e 173
Typical Summary for a Quality Command............ccceeeviiiiiiiiiiiieeee 176
Legend for Quality Surface 1 Skew Draw MesSh............ccccoovvviviiiiiiiiiieeeeennn. 177
Element types defined in CUBIT........oooiiiiiiiiiiiiiee e 180
Nodeset id base numbers for geometric entitiesccccvvviiiiiiiiiiiiinnnnnenn. 183
CUBIT Features Exercised by EXamples.ccccceeiiieeeiiiiiiieeeccee e 188
AVAIIADIE COlOIS ..o 203

CUBIT Version 3.0 Reference ManualXVv

—-—_’/

lig

v Introduction...

Chapter 1: Getting Started

v How to Use This Manual...
v Features...

v Executing CUBIT...

v CUBIT Mailing Lists...

o oo b~ N BB P

v Problem Reports and Enhancement Requests...

Introduction

Welcome to CUBIT, the Sandia National Laboratory automated mesh generation toolkit. With
CUBIT the geometry of a part can be imported, created, and/or modified. The geometry can be
discretized into a finite element mesh using a combination of meshing algorithms and boundary
conditions can be applied to the mesh through the geometry and appropriate files for analysis
generated. CUBIT is designed to reduce the time required to create quadrilateral, triangular,
hexahedral, tetrahedral and mixed element meshes, with an emphasis on algorithms and
techniques for generating large, unstructured, and high-quality hexahedral meshes.

The CUBIT environment is designed to provide the user with a powerful toolkit of meshing
algorithms that require varying degrees of input to produce a complete finite element model. As
such, the code is constantly being updated and improved. Feedback from our users indicates that
new meshing tools are often needed and/or desired before they have been completely tested and
debugged; therefore, the released versin of CUBIT contains algorithms which are to be
considered not quite ready for production use. These algorithms are identified in their
documentation later in this manual.

Experience has shown that generating meshes for complex, solid model-based geometries
requires a variety of tools, from completely automatic tools to tools requiring large amounts of
user input. The overall goal of the CUBIT project is to reduce the time to mesh for these
problems, and this goal has been achieved by inegrating these tools in a common framework.
The user is encouraged to become familiar with the available tools, so that he can choose the
right tool for his particular job.

v How to Use This Manual

This manual provides specific information about the commands and features of CUBIT. It is
divided into chapters which roughly follow the process in which a finite element model is

designed, from geometry creation to mesh generation to boundary condition application. An
example is provided in a tutorial chapter to illustrate some of the capabilities and uses of

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual 1

CHAPTER 1 . Getting Started

\
Ry

CUBIT. Appendices containing complete command usage, examples, installation instructions,
and a list of available colors are included.

Integrated in CUBIT are algorithms and tools which are insar bewarestate. As they are
further tested (often with the assistance of users) and improved, the tool becomes more stable
and production-worthy. Since documentation of the tool is necessary for actual use, we have
included the documentation of all available tools in the manual. However, to warn the user, a
“hammer” icon is placed in the document next to those features which are in a state of work-in-
progress (See “hammer” icon in left margin). When using these tools, the user should proceed
with caution.

Certain portions of this manual contain information that is vital for understanding and
effectively using CUBIT. These portions are hilighted with a “key” icon positioned in the
document next to these sections.

This manual documents CUBIT Version 4.0, April 2000.

v Features

The CUBIT environment is designed to provide the user with a powerful toolkit of meshing
algorithms that require varying degrees of input to produce a complete finite element model.
The following sections provide a brief overview of the various features in CUBIT.

Geometry Creation, Modification and Healing

The CUBIT package relies on the ACIS solid modeling engine for geometry representation and
qguerying. Geometry creation is accomplished using the geometric primitives and boolean
operations in CUBIT or by reading model from a file in the ACIS SAT file format. SAT files can
be written directly from several commercial CAD systems, including SolidWorks and
AutoCAD. In addition, geometry models can be generated in and written from other CAD
systems and translated to the SAT format; translators are available for many formats, including
Pro/Engineer, IGES and STEP. CUBIT can also directly import planar surface geometry in the
FASTQ [5] file format, a legacy meshing tool written at Sandia. Finally, there are efforts or plans
underway to port CUBIT directly to other CAD systems, including Pro/Engineer and Ideas.

The CUBIT project has purchased a limited number of licenses for geometric healing provided
by Spatial Technology. This technology allows the users to “heal” or clean invalid geometric
entities and topology resulting from translation or model creation artifacts. Currently, healing is
handled by sending “dirty” geometry to members of the CUBIT project for healing. For more

information about obtaining a license to do local healing, contact the CUBIT development team.

Non-Manifold Topology

Typical assembly meshes produced using CUBIT require contiguous mesh across multiple parts
in an assembly. This “non-manifold topology” is accomplished in CUBIT by representing
shared topological surfaces in the geometric model. Geometric models are always imported into
CUBIT as manifold models; then, surfaces which are pass a geometric and topological
comparison are “merged” to form shared surfaces. A similar technique is used to merge model
edges and vertices across parts. These comparisons are performed automatically, and can
optionally be restricted to subsets of the model (to allow representations of such features as slide
lines).

2 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 1 . Getting Started

Geometry Decomposition

Solid models often require decomposition to make them amenable to hexahedral meshing.
CUBIT contains a wide variety of tools for interactive geometry decomposition, and a capability
for performing automatic geometry decomposition is also under development.

Mesh Generation

CUBIT contains a variety of tools for generating meshes in one, two and three dimensions.
While the primary focus of CUBIT is on generating unstructured quadrilateral and hxahedral
meshes, algorithms are also available for structured mesh generation and triangle/tetrahedral
mesh generation. Several algorithms for generating mixed hex-tet meshes are also being
developed.

Boundary Conditions

CUBIT uses the EXODUS-II format specification for exporting mesh data. EXODUS
represents boundary conditions on meshes using Element Blocks, Nodesets, and Sidesets.
Element Blocks are used to group elements by material type. Nodesets can be used to group
nodes for application of nodal boundary conditions, for example enforced displacement or
nodal temperature values. Sidesets are used to represent face-based and edge-based boundary
conditions like pressure or heat flux.

Using Element Blocks, Nodesets and Sidesets, a mesh and the appropriate boundary conditions
can be specified in an analysis-independent manner. Typically this specification is combined
with an additional data file which designates the specific type of boundary condition
(temperature, displacement, pressure, etc.), along with boundary condition values.

Element Types

Element types supported in CUBIT include 2 and 3 node bars and beams; 4, 8, and 9 node
qguads; 3, 6, and 7 node triangles, 4, 8, and 9 node shells; 4, 8, 10, and 16 node tetrahedra, 5 node
pyramids, and 8, 20, and 27 node hex elements. Element types can be specified before or after
mesh generation is performed. Higher order nodes are projected to the solid geometry where
appropriate.

Graphics Display Capabilities

CUBIT uses the HOOPS package for its graphics and rendering engine. CUBIT can display

geometric and mesh entities in several modes, including hidden line, shaded or wireframe

modes. CUBIT supports screen picking of geometric and mesh entities, as well as mouse-

controlled operations on the model view like rotate, pan, and zoom. HOOPS contains drivers

which take advantage of hardware acceleration on most supported platforms, as well as support
for a standard X11 display. PostScript files of any displayed image can also be generated.
CUBIT can also be run without graphics, to allow execution in batch mode or over dialup lines.

Command Line Interface

User interaction with CUBIT is performed through a command line interface; no GUI is
available at this time (though there are plans for providing a GUI in the near future). Commands
can be entered either interactively or in batch mode though a command file. The command line

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual 3

CHAPTER 1 . Getting Started

interface supports the APREPRO command preprocessor, which when combined with CUBIT’s
scripting capability allows parameterization of CUBIT input.

Hardware Platforms

CUBIT is written in “standard” C++ and is currently supported on Sun Solaris 2.6, Hewlett-
Packard (HP-UX 10.20), and Silicon Graphics (IRIX 6.5) unix workstations. CUBIT has also
been ported to the Microsoft NT operating system; plans are underway to make this version
available to Sandia CUBIT users.

v Executing CUBIT

Execution Command Syntax

The command syntax recognized by CUBIT is:

cubit [-help] [-initfile <val>] [-noinitfile] [-solidmodel <val>]
[-batch] [-nographics] [-nojournal] [-journalfile <file>] [-maxjournal <val>]
[-display <val>] [-noecho] [-debug=<val>] [-information={on|off}]
[-warning={on|off}] [-Include <path>] [-fastq <fastq_file>]
[<input_file_list>][<var=value>]...

where the quantities in square brackptyptions] are optional parameters that are used to
modify the default behavior of CUBIT and the quantities in angle bracketfies> are values
supplied to the option. Optional arguments to CUBIT are summarized below.

-help Print a short usage summary of the command syntax to the terminal and exit.

-initfile <val> Use the file specified byval> as the initialization file instead of the default
initialization file HOME/.cubit .

-noinitfile Do not read any initialization file. The default behavior is to read the initialization
file SHOME!/.cubit or the file specified by thénitfile option if it exists.

-solidmodel <val> Read the ACIS solid model geometry information from the file specified
by <val> prior to prompting for interactive input.

-batch Specify that there will be no interactive input in this execution of CUBIT. CUBIT will
terminate after reading the initialization file, the geometry file, anditiprit_file_list>.

-nographics Run CUBIT without graphics. This is generally used with thatch option or
when running CUBIT over a line terminal.

-display Sets the location where the CUBIT graphics system will be displayed, analogous to
the DISPLAY environment variable for the X Windows system.

-nojournal Do not create a journal file for this execution of CUBIT. This option performs the
same function as th#ournal Off command. The default behavior is to create a new journal file
for every execution of CUBIT.

-journalfile <file> Write the journal entries tafile>. The file will be overwritten if it already
exists.

-maxjournal <val> Only create a maximum ofval> default journal files. Default journal
files are of the forneubit.#.jou where # is a number in the range 01 to 99.

4 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 1 . Getting Started

-noecho Do not echo commands to the console. This option performs the same function as
theEcho Off command. The default behavior is to echo commands to the console.

-debug=<val> Set to “on” the debug message flags indicatedisgl>, where<val> is a
comma-separated list of integers or ranges of integers, e.g. 1,3,8-10.

-information={on|off} Turn on/off the printing of information messages from CUBIT to the
console.

-warning={on|off} Turn on/off the printing of warning messages from CUBIT to the console.

-Include=<include_path> Setthe patch to search for journal files and other input files to be
<include_path>. This is useful if you are executing a journal file from another directory and
that journal file includes other files that exist in that directory also.

-fastq=<fastq_file> Read the mesh and geometry definition data in the FASTQ file
<fastq_file> and interpret the data as FASTQ commands. See Reference [5] for a description
of the FASTQ file format.

<input_file_list> Input files to be read and executed by CUBIT. Files are processed in the
order listed, and afterwards interactive command input can be entered (unless the -batch option
is used.)Read the mesh and geometry definition data in the FASTQ file <fastq_file> and
interpret the data as FASTQ commands. See Reference [5] for a description of the FASTQ file
format.

<variable=value> APREPRO variable-value pairs to be used in the CUBIT session. Values
can be either doubles or character type (character values must be surrounded by double quotes.),

Command options can also be specified usingGuBIT_OPT environment variable (See
“User Environment Settings” on page 5.)

User Environment Settings

CUBIT can interpret the following environment variables.

DISPLAY: X-Window display to which the graphics window should be displayed (and which
screen should be used on displays with multiple monitors).

CUBIT_OPT: Execution command line parameter options. Any valid options described in
“Execution Command Syntax” on page 4.

CUBIT_LICENSE: Directory location of MSC Aries tetrahedral mesher license file; by
default, this license file is set for the ENGSCI LAN compute server and on the JAL LAN it is
located in /var/scrll/. mscCAERoot on several personal machines. Contact the CUBIT
development team for more information on obtaining a license for this mesher.

Initialization File

If the file SHOME!/.cubit or the file specified by the optionahitfile <val> option exists when
CUBIT begins executing, it is read prior to beginning interactive command input. This file is
typically used to perform initialization commands that do not change from one execution to the
next, such as turning off journal file output, specifying default mouse buttons, setting geometric
and mesh entity colors, and setting the size of the graphics window.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual 5

CHAPTER 1 . Getting Started

v CUBIT Mailing Lists

A mailing list is used to keep interested users informed of new features, bug-fixes, and other
pertinent information about CUBIT. The list can also be used for general discussions with other
CUBIT users as well as CUBIT developers. To send questions or comments to this list, send
email to cubit@sandia.gov. Users can subscribe to the mailing list by sending a mail message
to majordomo@jal.sandia.gov with a body consisting of

subscribe cubit

An additional mailing list has been created for direct communication with the CUBIT
developers. All messages sent to this list will be distributed to the CUBIT developers only. This
list should be used for questions that are not of general interest to other CUBIT users and for

reporting bugs in CUBIT. Messages are sent to the CUBIT developers by sending mail to the
address:

cubit-dev@sandia.gov

v Problem Reports and Enhancement
Requests

Ry

All CUBIT bugs, problem reports and enhancement requests for CUBIT should be sahitto
dev@sandia.gov These requests will be addressed as quickly as possible. The CUBIT
developement team will review the problem or enhancement request. Pending the review
process, an enhancement request or bug report will be added to CUBIT's bug tracking system,

and will be resolved in a timely manner. In general users should expect responses within 48
hours.

Note: The existence and recommended use of an electronic mailing list to report bugs and
request enhancements is not intended to discourage face-to-face discussion with
CUBIT developers, but rather to minimize response time for bug fixes. Users are
encouraged to discuss bugs, enhancements or general meshing issues with the CUBIT
development team.

6 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

Biei]

v Introduction...7

Chapter 2 Tutorial

v Overview...8

v Step 1: Beginning Execution...8

v Step 2: Creating the Brick...10

v Step 3: Creating the Cylinder...10

v Step 4: Adjusting the Graphics Display...11
v Step 5: Forming the Hole...12

v Step 6: Setting Interval Sizes...12

v Step 7: Surface Meshing...13

v Step 8: Volume Meshing...14

v Step 9: Inspecting the Model...15

v Step 10: Defining Boundary Conditions...16
v Step 11: Exporting the Mesh...17

v Congratulations...17

v Introduction

The purpose of this chapter is to demonstrate the capabilities of CUBIT for finite element mesh
generation as well as provide a brief tutorial on the use of the software package. This chapter is
designed to demonstrate step-by-step instructions on generating a simple mesh on a perforated
block.

The following demonstrates the basics of using CUBIT to generate and mesh a geometry. By
following this tutorial, you will become familiar with the command-line interface and with as
much of the CUBIT environment as possible without stopping for detailed explanations. All the
commands introduced in this tutorial are thoroughly documented in subsequent chapters.

Here are a few tips in following the example in the tutorial:

» Focus on instructions preceded with “Step” numbers. These take you through a series of
explicit activities that describe exactly what to do to complete the task.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual 7

CHAPTER 2 . Tutorial

» Referto screen shots and other pictures that show you what you should see on your own
display as you progress through the tutorial.

« An example of the command line is shown below. In this tutorial, the command that you
should type will be proceeded by the word “Command” and a colon.

cubit> This is a Command Line

v Overview

This tutorial demonstrates the use CUBIT to create and mesh a brick with a through-hole. The
primary steps in performing this task are:

» Create geometry

» Setinterval sizes and mesh schemes

* Mesh geometry

 Specify boundary conditions

» Exportmesh

Each of these steps is described in detail in the following sections.

The geometry for this tutorial is a block with a cylindrical hole in the center, shown in Figure 2-
1. This figure also shows the curve and surface identification (ID) numbers, which are

Figure 2-1: Geometry for Cube with Cylindrical Hole

referenced in the command lines shown with each step. The final meshed body is shown in
Figure 2-2 and also at the end of this chapter.

v Step 1: Beginning Execution

Type “cubit” to begin execution of CUBIT. If you have not yet installed CUBIT, see instructions
for doing so in the “CUBIT Installation” Appendix. A CUBIT console window will appear

8 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 2 . Tutorial

)

isiz‘:’:ii’:z’:::i:’}?
NWwSSSEse))
NS

AN

[<
RN

AN

L7
Saatl

SN
*\\\
AN

“
>
x

ol

9
%-

7
%

7

AN

iy,
0
I
i\

B

("‘II.

S

Figure 2-2: Generated Mesh for Cube with Cylindrical Hole
which tells the user which CUBIT version is being run and the most recent revision date. (See

cCcCccce o o BEEBEEB ITTI TTTTTT
cc cc o o BB BB IT TT
cc o o BB BB IT TT
cc o o BEEBEEB IT TT
cc o o BB BB IT TT
cc cc o o BB BB IT TT
cCcCccce oo BEEBEEB ITTI TT

] *** CUBIT Version 1.8.1 *=**
*#%+ ACTIS Version 1.hHh *#**
Revised 5/1/94
AN ALL-QUADRILATERAL AND ALL-HEXAHEDRAL, HMESH
GEHERATIOH PROGEAM FOR
PEE-PROCESS5IHG OF FINITE ELEMENT AHNALYSES
CUBIT is based upon ACIS software by SPATIAL TECHHOLOGY IHC.

Executing on 05/20/94 at 09:37:35

Figure 2-3: CUBIT startup screen.
Figure 2-2 for a picture of this window). This window echos commands and relays information
about the success or failure of attempted actions.
Some things to notice are:

 Atthe bottom of the CUBIT window you will be told where the commands entered in this
CUBIT session will be journaled. For example: “Commands will be journaled to
‘cubit0l.jou’.

 Inaddition to the CUBIT version, the code also reports the versions of ACIS and HOOPS that
have been compiled into CUBIT (above, versions 1.5 and 2.x, respectively.)

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual 9

CHAPTER 2 . Tutorial

» The command line prompt appears after the banner screen, and appears as “CUBIT>".
« Commands are entered at that prompt, followed by the “Enter” key.

» Upon startup, a graphics window should also appear, with an axis triad in the lower left hand
corner (this window will not appear if CUBIT is started with the -nograpics option.)

v Step 2: Creating the Brick

Now you may begin generating the geometry to be meshed. You will create a brick of width 10,
depth 10 and height 10. The width and depth correspond to the x and y dimensions of the object
being created. The “width” or x-dimension is screen-horizontal and the “depth” or y-dimension
is screen-vertical. The height or z-dimension is out of the screen. The command to create this
object is:

cubit> Create Brick Width 10. Depth 10. Height 10.

The cube should appear in your display window as shown in Figure 2-4.

Figure 2-4: Display of brick.
» Note that the journaled version of the command is echoed above the next command line along
with the confirmation message “brick body 1 successfully created.”
e The command line is not case-sensitiveBsick andWidth do not need to be capitalized.

* The “Create” qualifier is optional in this command; also, if the arguments to the Depth and
Height qualifiers are identical to that of the Width qualifier, they can be omitted. Therefore,
identical results could be achieved with the command “Brick Width 10.”

v Step 3: Creating the Cylinder

Now you must form the cylinder which will be used to cut the hole from the brick. This is
accomplished with the command

cubit> create cylinder height 12 radius 3

At this point you will see both a cube and a cylinder appear in the CUBIT display window, as
shown in Figure 2-5.

10 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 2 . Tutorial

Figure 2-5: Brick and cylinder.

v Step 4: Adjusting the Graphics Display

The geometry is drawn in the graphics display in perspective mode, by default from a viewing
direction of the +z axis. This view can now be adjusted to verify the proper orientation of the
geometry just created. To do this activate your graphics window by placing your cursor in the
window or by clicking at the top of it (this will vary depending upon your window settings in
your operating system). To change your view, use the Left mouse button to interactively rotate
the view, the Middle mouse button to zoom in or out, and the Right mouse button to pan the
view. On the GUI version of CUBIT the "control" key must be held down while right, middle
or left clicking for transformations. The GUI by default is set up to mouse like other commercial
packages so the following button clicks apply: cntrl-right will zoom, cntrl-middle will rotate,
and cntrl-left will pan. Graphics changes may also be performed via the command line by
specifically setting the view locations (at the command prompt hglp at or help from for

the correct syntax).

Use the mouse buttons to make the display look like Figure 2-6.

Figure 2-6: View from different perspective.

In the display, the wireframe picture shows the relative locations of the bodies. Viewing the
image in shaded mode improves the perspective; this will be described in Step 9: Inspecting the
Model.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manualll

CHAPTER 2 . Tutorial

v Step 5: Forming the Hole

Now the cylinder can be subtracted from the brick to form the hole in the block. Issue the
following command:

cubit> Subtract 2 From 1

Note: Note that both original bodies are deleted in the boolean operation and replaced with
a new body (with an id of 3) which is the result of the boolean opel@tibtract .

The result of this operation is a single body, a brick with a hole through it. This is shown in
Figure 2-7.

Figure 2-7: Brick after subtracting cylinder.

We have now completed creating the geometry, and are ready to generate a mesh.

v Step 6: Setting Interval Sizes

The volume shown in Figure 2-7 will be meshed by sweeping a surface mesh from one side of
the block to the other.Before generating any mesh, the user must specify the size of the elements
to be generated. In this example, one element size will be specified for the volume as a whole
and a smaller size will be specified for around the hole. A direct interval setting will be specified
for the sweep direction.

To set the interval size for the overall body, enter the command
cubit> body 3 interval size 1.0

Since the brick is 10 units in length on a side, this specifies that each straight curve is to receive
approximately 10 mesh elements.

In order to better resolve the hole in the middle of the top surface, we set a smaller size for the
curve bounding this hole. To find the id number of the curve bounding the hole, the user can
either pick the curve (See “Selecting Entities with the Mouse” on page 35.) or turn curve labels
on and regenerate the view. To do the latter, use the command

12 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 2 . Tutorial

cubit> label curve on

cubit> display
The result is shown in Figure 2-8. Then the interval size can be set for the appropriate curve:

Figure 2-8. Geometry with curve labeling turned on.

cubit> curve 15 interval size.5
Finally, we would like to generate exactly 3 element layers in the sweep direction. This is
accomplished by setting the intervals on curve 27:

cubit> curve 27 interval 3

v Step 7: Surface Meshing

Now all necessary intervals have been set, and the meshing can proceed. Begin by meshing the
front surface (with the hole) using the paving algorithm. This is done in two steps. First set the
scheme for that surface f@ave, then issue the command kesh. Since the surface to be

paved is number 11, issue the command:

cubit> surface 11 scheme pave
With the meshing scheme specified, we proceed to mesh the surface:

cubit> mesh surface 11

A hidden line view of the result is shown Figure 2-9.

1. The surface id can be obtained using either of the two methods described in the previous step.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manuall3

CHAPTER 2 . Tutorial

",
;
NN

s
AT

/77

Figure 2-9: Surface meshed with paving.

v Step 8: Volume Meshing

The volume mesh can now be generated. Again, the first step is to specify the type of meshing
scheme should be used and the second step is to issue the order to mesh. In certain cases, the
scheme can be determined by CUBIT automatically. For sweepable volumes, the automatic
scheme detection algorithm also identifies the source and target surfaces of the sweep
automatically.

To instruct the code to automatically determine the meshing scheme and in this case the source
and target surfaces, enter the command

cubit> volume 3 scheme auto
To view the results of auto scheme selection, certain data about the volume can be listed:
cubit> list volume 3

The results of this command are shown in Figure 2-10; note that the scheme, and in this case the
source and target surfaces, are reported toward the top of the list output.

With the scheme set, tilmesh command may be given:
cubit> mesh volume 3

The final meshed body will appear in the display window, as shown in Figure 2-11. By default
only the surface mesh is drawn, if you want to see all of the elements you can enter:

cubit> draw hex all in volume 3

14 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 2 . Tutorial

Volume Entity (Id = 3)
Meshed: No
Mesh Scheme: sweep (automatically selected)
Source: Surface 11 (Id=11)
Target: Surface 12 (1d=12)
Sweep Smooth Scheme: Off
Smooth Scheme: equipotential fixed

Interval Count: 1
Interval Size: 1.000000

Block Id: 0
7 Owned Surfaces: Mesh Scheme Interval:
Name Id +is meshed Smooth Scheme Count Size
Surface 10 10 submap- winslow fixed 1 1
Periodic Interval: 3, Soft

Surface 11 11 pave- winslow fixed 1 1
Surface 12 12 pave- winslow fixed 1 1
Surface 13 13 map- winslow fixed 1 1
Surface 14 14 map- winslow fixed 1 1
Surface 15 15 map- winslow fixed 1 1
Surface 16 16 map- winslow fixed 1 1

In Body 3.

Journaled Command: list volume 3

Figure 2-10: Output from listing volume 3

Figure 2-11: Wireframe view of volume mesh.

v Step 9: Inspecting the Model

The type, quality, and speed of the rendering the image can be controlled in CUBIT by using
severalgraphics mode commands, such &ireframe , Hiddenline , andSmoothshade .
For example:

Document Version 4/18/00 CUBIT Version 4.0 Reference Manuall5

CHAPTER 2 . Tutorial

cubit> graphics mode hiddenline

The hidden line display is illustrated in Figure 2-12. Next, try:
cubit> graphics mode smoothshade

The smoothshade display is also shown Figure 2-12.

For detailed information on the viewing mode options, See “Graphics Modes” on page 29..

Figure 2-12: Hiddenline (left) and shaded (right) view of volume mesh.

Although CUBIT automatically computes limited quality metrics after generating a mesh and
warns the user about certain cases of bad quality, it is still a good idea to inspect a broader set
of quality measures. To do this, enter the command

cubit> quality volume 3

The results of the quality output are shown below. For an explanation of each quality metric
along with acceptable ranges, see Figure 2-13. For the purposes of this tutorial, you can assume
the quality metrics shown below are in an acceptable range.

v Step 10: Defining Boundary Conditions

Let us assume that the we need to define one material type for the entire mesh, and a single node-
based boundary condition on all surfaces. This accomplished by identifying an Element Block
and a Nodeset, respectively; the id numbers assigned to these entities are assigned by the user,
usually by some convention meaningful to the analysis to be done. The element block and
nodeset are identified using the commands:

16 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 2 . Tutorial

Volume 3 Hex quality, 333 elements:

Function Name Average StdDev Minimum (id) Maximum (id)

Aspect Ratio 4.887e+00 1.312e+00 2.860e+00 (287) 8.866e+00 (142)
Skew 1.572e-01 1.071e-01 5.640e-03 (332) 4.455e-01 (87)

Taper 1.067e-15 1.054e-15 1.322e-17 (198) 6.916e-15 (223)

Element Volume 2.158e+00 1.089e+00 5.727e-01 (31) 4.593e+00 (176)
Stretch 3.145e-01 8.183e-02 1.557e-01 (148) 4.737e-01 (278)
Diagonal Ratio 9.830e-01 1.647e-02 9.331e-01 (87) 9.994e-01 (221)
Dimension 5.330e-01 1.329e-01 2.868e-01 (31) 7.861e-01 (158)
Oddy 6.200e+01 5.663e+01 1.081le+01 (64) 2.535e+02 (149)

Condition No. 2.711e+00 8.275e-01 1.675e+00 (64) 5.599e+00 (220)
Jacobian 1.728e+00 9.345e-01 4.218e-01(38) 3.870e+00 (64)
Scaled Jacobian 9.236e-01 6.745e-02 6.467e-01 (109) 9.965e-01 (52)

Journaled Command: quality volume 3
Figure 2-13: Quality table from volume 3’s hex mesh
cubit> block 100 volume 3

cubit> nodeset 100 surface all in volume 3

v Step 11: Exporting the Mesh

Finally, the mesh needs to be written to an Exodusll file. This is easily done:
cubit> export genesis ‘brick_with_hole.g’

The filename and extension are arbitrary and, like the block and nodeset numbers, are usually
named according to a convention meaningful to the analysis.

v Congratulations

You have created your first CUBIT mesh. The following chapters contain more detailed

information about using CUBIT and an in-depth description of the meshing algorithms
available.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manuall7

CHAPTER 2 . Tutorial

18 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

Biei]

v Introduction...19

Chapter 3. Environment

v Command Syntax...19

v Executing CUBIT...21

v Session Control...23

v Command Recording and Playback...23
v Entity Specification...25

v Command Line Editing...28

v Graphics...29

v Graphics Enhancements...49

v Listing Information...50

v Introduction

The CUBIT user interface is designed to fill multiple meshing needs throughout the analysis
process. The user interface options include a traditional command line interface as well as no-
graphics and batch mode operation. This chapter covers the interface options as well as the use
of journal files, control of the graphics, a description of methods for obtaining model
information, and an overview of the help facility.

v Command Syntax

The execution of CUBIT is controlled either by entering commands from the command line or
by reading them in from a journal file. Throughout this document, each function or process will
have a description of the corresponding CUBIT command; in this section, general conventions
for command syntax will be described. The user can obtain a quick guide to proper command
format by issuing the<keyword> help command; see “Obtaining Help” on page 58 for
details.

CUBIT commands are described in this manual and in the help output using the following
conventions. An example of a typical CUBIT command is:

{volume_list} Scheme Project [Source {surface_list} Target {surface_list}]

The commands recognized by CUBIT are free-format and abide by the following syntax
conventions.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manuall9

CHAPTER 3

Environment

Caseis not significant.

The “#” character in any command line begins a comment. Hiahd any characters
following it on the same line are ignored.

Commands may be abbreviated as long as enough characters are used to distinguish it from
other commands.

The meaning and type of command parameters depend on the keyword. Some parameters
used in CUBIT commands are:

Numeric: A numeric parameter may be areal number or an integer. Areal
number may be in any legal C or FORTRAN numeric format (for example, 1,
0.2,-1e-2). Aninteger parameter may be in any legal decimal integer format
(forexample, 1, 100, 1000, butnot 1.5, 1.0, Ox1F).

String: A string parameter is a literal character string contained within single
or double quotes. For exampteyisis a string’ .

Filename:A filename parameter must specify a legal filename on the system
on which CUBIT is running. The filename must be specified using either a
relative path (/cubit/mesh.jou), a fully-qualified path fhome/jdoe/cubit/

mesh.jou), or no path; in the latter case, the file must be in the working
directory or in a directory specified using the -path option to CUBIT (see
“Executing CUBIT” on page 4 for details.) Like a string, the file name must

be contained within single or double quotes.Environment variables and
aliases may not be used in the filename specification; for example, the C-Shell
shorthand of referring to a file relative to the user’s login directejyoe/
cubit/mesh.jou) is not valid.

» Toggle: Some commands require a “toggle” keyword to enable or disable a

setting or option. Valid toggle keywords aren™, “ yes”, and “true ” to enable

the option; andéft”, “no”, and “false ” to disable the option.

Each command typically has either:

an action keyword or “verb” followed by a variable number of parameters, for
example

Mesh Volume 1

HereMesh is the verb an®/olume 1 is the parameter.

or a selector keyword or “noun” followed by a name and value of an attribute
of the entity indicated, for example

Volume 1 Scheme Project Source 1 Target 2

HereVolume 1 is the nounScheme is the attribute, and the remaining data are parameters
to theScheme keyword.

The notation conventions used in the command descriptions in this document are:

» The command will be shown in a format thabks like this ,
» Aword enclosed in angle bracketgarameter>) signifies a user-specified parameter. The

value can be aninteger, a range of integers, a real number, a string, or a string denoting a

20 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

filename or toggle. The valid value types should be evident from the command or the
command description.

» Aseries of words delimited by a vertical bahpicel | choice2 | choice3) signifies a
choice between the parameters listed.

» Aword enclosed in square brackdiggtional]) signifies optional input which can be
entered to modify the default behavior of the command.

v Executing CUBIT

Execution Command Syntax

The command syntax recognized by CUBIT is:

cubit [-help] [-initfile <val>] [-noinitfile] [-solidmodel <val>] [-batch] [-
nographics] [-nojournal] [-journalfile <file>] [-maxjournal <val>] [-display
<val>] [-noecho] [-debug=<val>] [-information={on|off}] [-
warning={on|off}] [-Include <path>] [-fastq <fastq_file>]
[<input_file_list>][<var=value>]...

where the quantities in square brackptsptions] are optional parameters that are used to
modify the default behavior of CUBIT and the quantities in angle bracketfies> are values
supplied to the option. Optional arguments to CUBIT are summarized below.

-help Print a short usage summary of the command syntax to the terminal and exit.

-initfile <val> Use the file specified byval> as the initialization file instead of the default
initialization file $HOME/.cubit .

-noinitfile Do not read any initialization file. The default behavior is to read the initialization
file $HOME/.cubit or the file specified by thénitfile option if it exists.

-solidmodel <val> Read the ACIS solid model geometry information from the file specified
by <val> prior to prompting for interactive input.

-batch Specify that there will be no interactive input in this execution of CUBIT. CUBIT will
terminate after reading the initialization file, the geometry file, anditiput_file_list>.

-nographics Run CUBIT without graphics. This is generally used with thatch option or
when running CUBIT over a line terminal.

-display Sets the location where the CUBIT graphics system will be displayed, analogous to
the DISPLAY environment variable for the X Windows system.

-driver <driver_type> Sets the type of graphics display driver to be used. Available drivers
depend on platform, hardware, and system installation. Typical drivers include X11 and
OpenGL.

-nojournal Do not create a journal file for this execution of CUBIT. This option performs the
same function as th#ournal Off command. The default behavior is to create a new journal file
for every execution of CUBIT.

-journalfile <file> Write the journal entries tafile>. The file will be overwritten if it already
exists.

-maxjournal <val> Only create a maximum ofval> default journal files. Default journal
files are of the forneubit.#.jou where # is a number in the range 01 to 99.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual21

CHAPTER 3

Environment

-noecho Do not echo commands to the console. This option performs the same function as
theEcho Off command. The default behavior is to echo commands to the console.

-debug=<val> Set to “on” the debug message flags indicatedisgl>, where<val> is a
comma-separated list of integers or ranges of integers, e.g. 1,3,8-10.

-information={on|off} Turn on/off the printing of information messages from CUBIT to the
console.

-warning={on|off} Turn on/off the printing of warning messages from CUBIT to the console.

-Include=<include_path> Setthe patch to search for journal files and other input files to be
<include_path>. This is useful if you are executing a journal file from another directory and
that journal file includes other files that exist in that directory also.

-fastq=<fastq_file> Read the mesh and geometry definition data in the FASTQ file
<fastq_file> and interpret the data as FASTQ commands. See Reference [5] for a description
of the FASTQ file format.

<variable=value> APREPRO variable-value pairs to be used in the CUBIT session. Values
can be either doubles or character type (character values must be surrounded by double quotes.),

Command options can also be specified using@GRBIT_OPT environment variable (See
“User Environment Settings” on page 5.)

<input_file_list> Input files to be read and executed by CUBIT. Files are processed in the
order listed, and afterwards interactive command input can be entered (unless the -batch option
is used.)Read the mesh and geometry definition data in the FASTQ file <fastq_file> and
interpret the data as FASTQ commands. See Reference [5] for a description of the FASTQ file
format.

Environment Variables

CUBIT uses the following environment variables.

DISPLAY: X-Window display to which the graphics window should be displayed (and which
screen should be used on displays with multiple monitors).

CUBIT_OPT: Execution command line parameter options. Any valid options described in
“Execution Command Syntax” on page 21.

CUBIT_LICENSE: Directory location of MSC Aries tetrahedral mesher license file; by
default, this license file is located in /var/scrll/. mscCAERoot on 836 and 880 LAN compute
servers. Contact the CUBIT development team for more information on obtaining a license for
this module.

HOOPS_PICTURE: Sets the driver type and display to be used by the graphics system.
Takes precedence over the DISPLAY environment variable. The formativier type/
machine_name:display . An example i®pengl/mycomputer:0.0

Initialization File

If the file SHOME/.cubit or the file specified by thenitfile <val> option exists when CUBIT
begins executing, it is read prior to beginning interactive command input. This file is typically
used to perform initialization commands that do not change from one execution to the next, such
as turning off journal file output, specifying default mouse buttons, setting geometric and mesh
entity colors, and setting the size of the graphics window.

22 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

v Session Control

The following commands are used to control CUBIT execution.

Exit
Quit
» Reset Areset of CUBIT will clear the CUBIT database of the current geometry and mesh

model, allowing the user to begin a new session without exiting CUBIT. This is accomplished
with the command

; » Exit: The CUBIT session can be discontinued with either of the following commands

Reset [Genesis | Blocks | Nodesets | Sidesets]
A subset of portions of the CUBIT database to be reset can be designated using the qualifiers
listed. Advanced options controlled with tBet command are not reset.

» Version: To determine information on version numbers, enter the comdarsion .. This
command reports the CUBIT version number, the date and time the executable was compiled,
and the version numbers of the ACIS solid modeler and the HOOPS library linked into the
executable. This information is useful when discussing available capabilities or software
problems with CUBIT developers.

» Command echo:By default, commands entered by the user will be echoed to the terminal.
The echo of commands is controlled with the command:

[set] echo {on | off}

v Command Recording and Playback

Sequences of CUBIT commands can be recorded and used as a means to control CUBIT from
ASCII text files. Command or “journal” files can be created within CUBIT, or can be created
and edited directly by the user outside CUBIT.

Journal File Creation & Playback

Command sequences can be written to a text file, either directly from CUBIT or using a text
editor. CUBIT commands can be read directly from a file at any time during CUBIT execution,
or can be used to run CUBIT in batch mode. To begin and end writing commands to a file from
within CUBIT, use the command

Record '<filename>’

Record Stop
Once initiated, all commands are copied to this file after their successful execution in CUBIT.
To replay a journal file, issue the command

Playback '<filename>’

Journal files are most commonly created by recording commands from an interactive CUBIT
session, but can also be created using automatic journalling (see below) or even by editing an
ASCII text file. Commands being read from a file can represent either the entire set of

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual23

CHAPTER 3

Environment

commands for a particular session, or can represent a subset of commands the user wishes to
execute repeatedly.

Two other commands are useful for controlling playback of CUBIT commands from journal
files. Playback from a journal file can be terminated by placingstiop command after the last
command to be executed; this causes CUBIT to stop reading commands from the current journal
file. Playback can be paused using Baise command; the user is prompted to hit a key, after
which playback is resumed.

Journal files are most useful for running CUBIT in batch mode, often in combination with the
parameterization available through the Aprepros capability in CUBIT (see ...). Journal files are
also useful when a new finite element model is being built, by saving a set of initialization
commands then iteratively testing different meshing strategies after playing that initialization
file.

Automatic Journal File Creation

By default, CUBIT automatically creates a journal file each time it is executed. The file is
created in the current directory, and its name begins with the woubit' ” followed by a
number between 01 and H9e.g. cubit01.jou . Journal file names end with a “.jou”
extension, though this is not strictly required for user-generated journal files. If no journalling
is desired, the user may start CUBIT with theojournal command line option or use the
command

[set] Journal {Off | On}
Turning journalling back on resumes writing commands to the same jourAal file

Most CUBIT commands entered during a session are journalled; the exceptions are commands
that require interactive input (such Zeom Cursor), some graphics related commands, and

the Play command. All graphics related commands may be enabled or disabled with the
command:

Journal Graphics {On | Off}
The default islournal Graphics Off .

When an entity is specified in acommand using its name, the command may be journalled using
the entity name, or by using the corresponding entity type and id. The method used to journal
commands using names is determined with the command:

Journal Names {On | Off}

The default islournal Names On .

Note: If an entity is referred to using its entity type and id, the command will be journalled
with the entity type and id, even if the entity has been named.

1. Thisnumberincrements for each new journal file generated in that directory
2. IfCUBIT is started with thenojournal option, journalling cannot be resumed with thmirnal On command.

24 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

v Restart

CUBIT has a limited restart capability, which can be used to recover
the geometry and mesh saved in a previous session. A session is saved

and restored using the following commands:

Save [Restart] [[File] 'filename’] [<entity_list>]

Restore [Restart] [[File] 'filename’]

If a file name is entered, the geometry is saved to or restored from
that file. On the save command, if an entity list is given, only

those geometry entities are saved in the geometry file.

CUBIT uses geometry attributes to embed restart information in the
geometry file; by default, the file used to store geometry is named
"cubit_geom.sat". If mesh is present when Save is entered, this data
is stored in another file, named "cubit_mesh.g". Care should be taken
not to overwrite any restart files the user wants to save beyond the

next invocation of Save.

Data that are not saved when Save is used include global settings data
(debug flags, persistent ids, etc.) and graphics options (shading
mode, background color, etc.). These data will be incorporated into

the restart capability in a future release.

In addition to saving all possible attributes with the geometry, users
have the option of turning on or off individual attributes,
e.g. entity ids, groups, etc. See (section on attributes in chapter

4) for more details.

v Entity Specification

CUBIT identifies objects in the geometry, mesh, and elsewhere using ID numbers and
sometimes names. IDs and names are used in most commands to specify which objects on

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual25

CHAPTER 3 .

Environment

which the command is to operate. These objects can be specified in CUBIT commands in a
variety of ways, which are best introduced with the following examples (entity range input is
italicized):

General ranges:Surface 1 2 4to 6 by 2 3 48cheme Pave

Combined geometry, mesh, and genesis entitieBraw Sideset 1 Curve 3Hex 2 4 6
Geometric topology traversal:Vertex in Volume 3ize 0.3

Mesh topology traversal:DrawEdge in Hex 32

All keyword: List Block all

Expandkeyword: my_curve_group expargtheme Bias Factor 1.5

Except keyword: List Curve 1to 50 except246

Types of Entity Range Input

The types of entity range input available in CUBIT can be classified in 4 groups:

e General range parsing

Entity ids can be listed in ranges using multiple combinations of id IB%Y ...) and/or id
ranges (1 to 7 by 2). In addition, the “all” identifier can be used anywhere a range is input.
For example:

Draw Surface 1 2 4 to 6 Vertex all

e Topological traversal

Topological traversal is indicated using the “in” identifier, can span multiple levels in a
heirarchy, and can go either up or down the topology tree. For example, the following
entity lists are all valid:

* VertexinVolume 3
* VolumeinVertex246
» Curve1to3inBody4to8by2

If ranges of entities are given on both sides of the “in” identifier, the intersection of the two
sets results. For example, in the last command above, the curves that have ids of 1, 2 or 3
and are also in bodies 4, 6 and 8 are used in the command.

At this time, topology traversal is valid only within a particular entity type (mesh entities
or geometry entities) and not across entity types; no traversals are provided for genesis
entities. Therefore, the following entity lists would not be valid:

* Node in Surface 3 (invalid!)
 Surface in Edge 362 (invalid!)
» Surface in Nodeset 3 (invalid!)

e Exclusion

Entity lists can be entered then filtered using the “except” identifier. This identifier and the
ids following it apply only to the immediately preceeding entity list, and are taken to be
the same entity type. For example, the following entity lists are valid:

» Curveallexcept246

26 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

* Curve125to50except234
e Curveallexcept234insurface 2to 10
» Curvein surface 3 except 2 (produces empty entity list!)

e Group expansion

Groups in CUBIT can consist of any number of geometry entities, and the entities can be
of different type (vertex, curve, etc.). Operations on groups can be classified as operations
on the group itself or operations on all entities in the group. If a group identifier in a com-
mand is followed immediately by the ‘expand’ qualifier, the contents of the group(s) are
substituted in place of the group identifier(s); otherwise the command is interpreted as an
operation on the group as a whole. If a group preceding the ‘expand’ qualifier includes
other groups, all groups are expanded in a recursive fashion.

For example, consider group 1, which consists of surfaces 1, 2 and curve 1. Surfaces 1 and
2 are bounded by curves 2, 3, 4 and 5. The commands in Table 3-1 illustrate the behavior
of the ‘expand’ qualifier.

Table 3-1: Parsing of group commands; Group 1 consists of Surfaces 1-2
and Curve 1; Surfaces 1 and 2 are bounded by Curves 2-5.

Command

Entity list produced

Curve in group 1

Curve 1

Curve in group 1 expand

Curves 1, 2,3,4,5

The ‘expand’ qualifier can be used anywhere a group command is used in an entity list; of
course, commands which apply only to groups will be meaningless if the group id is fol-
lowed by the ‘expand’ qualifier.

Precedence of “Except” and “In”

Several keywords take precedence over others, much the same as some operators have
greater precedence in coding languages. In the current implementation, the keyword
“Except” takes precedence over other keywords, and serves to separate the identifier list
into two sections. Any identifiers following the “Except” keyword apply to the list of enti-

ties excluded from the entities preceding the “Except”. Table 3-2 shows the entity lists
resulting from selected commands.

Table 3-2: Precedence of “Except” and “In” keywords; Group 1 consists of
Surfaces 1-2 and Curve 1.

Command

Entity list produced

Curve all except 1 in Group 1

(All curves except curve 1

Curve all except 2 34 in Surf 2 to 10

(All curves except 2, 3, 4)

Document Version 4/18/00

CUBIT Version 4.0 Reference Manual27

CHAPTER 3 .

Environment

In the first command, the entities to be excluded are the contents of the list “[Curve] 1 in
Group 17, that is the intersection of the lists “Curve 1" and “Curve in Group 17; since the
only curve in Group 1 is Curve 1, the excluded list consists of only Curve 1. The remain-
ing list, after removing the excluded list, is all curves except Curve 1.

In the second command, the excluded list consists of the intersection of the lists
“Curve 2 3 4” and‘Curve in Surf 2 to 107; this intersection turns out to be just Curves 2, 3
and 4. The remaining list is all curves except those in the excluded list.

Placement in CUBIT Commands

In general, anywhere a range of entities is allowed, the new parsing capability can be
used. However, there can be exceptions to this general rule, because of ambiguities this
syntax would produce. Currently, the only exception to this rule is the command used to
define a sideset for a surface with respect to an owning volume.

v Command Line Editing

The CUBIT command line interface supports an EMACS-style line editing input package for
entering commands It allows the user to edit the current line and move through a list of
previous commands. Commands replayed from a journal file are not saved in the history list.
The keys used for command line editing are defined in Table 3-3.

Table 3-3: Command Line Interface Line Editing Keys

Key?

Function

A, "E Move to beginning or end of line, respectively

F, "B Move forward or backward one position in the current line.

D Delete the character under the cursor. Sends end-of-file if no characters on
the current line.

AH, DELP Delete the character to the left of the cursor.

K Delete from the current cursor position to the end of the line

P, "N Move to the previous or next line in the history buffer.

L Redraw the current line.

AU Delete the entire line.

NL, CR° Places current input on the history list, appends a newline and returns that
line to the CUBIT program for parsing.

2

Provides “instant” help; see “Obtaining Help” on page 58 for details.

1. Thecommand line interface package used in CUBIT is Copyright 1991 by Chris Thewalt. The following copyright notice
appears in the source code: “Permission to use, copy, modify, and distribute this software for any purpose and without fee is
hereby granted, provided that the above copyright notices appear in all copies and that both the copyright notice and this
permission notice appear in supporting documentation. This software is provided “as is” without express or implied warranty”.

28 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

a. The notation ~X refers to holding down the control key and then typing the letter X.
Case is not significant.

b. See the documentation for your keyboard/workstation to determine which key sends
the DEL character.

c. NL is a newline, typically *J, CR is a carriage return entered the normal way you end
a line of text.

v Graphics

The graphics display windows present a graphical representation of the geometry and/or the
mesh. The quality and speed of rendering the graphics, the visibility, location and orientation of
objects in the window, and the labeling of entities, among other things, can all be controlled by
the user.

Unless thenographics option was entered on the command line, a graphics window with a
black background and an axis triad will appear when CUBIT is first launched. The geometry
and mesh will appear in this window, and can be viewed from various camera positions and
drawn in various modes (wireframe, hiddenline, shaded, etc.). This section will discuss methods
for manipulating the graphics with the mouse and for controlling the appearance of entities
drawn in the graphics window.

Graphics in CUBIT operates on the principle of a “display list”, which keeps track of various
entities known to the graphics. All geometry and mesh objects created in CUBIT are put into
the display list automatically. The visibility and various other attributes of entities in the display
list can be controlled individually. In addition, CUBIT can also optionally display entities in an
temporary mode, independent of their visibility in the display list. Drawing of items in
temporary mode can be combined with the display list to customize the appearance. The overall
display is controlled by various attributes like graphics mode, camera position, andlighting, to
further enhance the graphics functionality.

Updating the Display

Among the most common graphics-related command3isplay . This command clears all
highlighting and temporary drawing, and then redraws the model according to the current
graphics settings. Two related commands @raphics Flush , which redraws the graphics
without clearing highlighting or temporary drawing, aGdaphics Clear , which clears the
graphics window without redrawing the scene, leaving the window blank.

Note: Although most changes to the model are immediately reflected in the graphics display,
some are not (for graphics efficiency). TypiBisplay will update the display after
such commands.

Graphics Modes

By default, the scene is viewed as a wireframe model. That s, only curves and edges are drawn,
and surfaces are transparent. Surfaces can be drawn differently by changing the graphics mode:

Graphics Mode {Wireframe | Hiddenline | Smoothshade | Truehiddenline |
Flatshade | Polygonfill | Painters}

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual29

CHAPTER 3 . Environment

The first three modes listed above are used most often; a sample geometry and mesh displayed
in each of these modes is shown in Figure 3-1. These modes have the following distinguishing

Figure 3-1. Examples of three most common viewing modes in CUBIT; Wireframe (left);
Hiddenline (center); Smoothshade (right).

characteristics:

» WireFrame - Surfaces are transparent. This is the fastest graphics mode.

» HiddenLine - Surfaces are notdrawn, but they obscure what is behind them, giving a more
realistic representation of the view.

» SmoothShade - Surfaces are filled and shaded. Shaded colors are interpolated across the
entire surface. This is the slowest graphics mode, but produces the most realistic results.

The remaining modes are useful in specific circumstances, can be used to refine the appearance
of the display, or result in a display of slightly lower quality but one which is generated more
quickly. Examles of each are shown in Figure 3-2; their distinguishing characteristics are:

Figure 3-2: Examples of other viewing modes in CUBIT; Flatshade (top left); Polygonfill(top
right); Painters(bottom left); Truehiddenline (bottom right).

» FlatShade - Similar to Smoothshade, but with each facet of the surface drawn in a constant
instead of interpolated color. Gives slightly poorer display quality but with increase speed
compared to Smoothshade.

» PolygonFill - Surfaces are filled but not shaded. This is a relatively fast mode, but has
relatively poor quality.

» Painters - Similar to Smoothshade mode, lmayrender more quickly, albeit with poorer
quality. This mode is slightly slower than FlatShade mode on most machines.

» Transparent - Renders surfaces as semi-transparent shaded images, allowing objects to
shine-through from behind. Is not supported on all platforms, and generally requires
advanced graphics hardware.

» Truehiddenline - Similar to Hiddenline mode, but gives better results with a slight speed
penalty. TrueHiddenLine mode also gives you additional options:

Graphics TrueHiddenLine Visibiltiy {on|off} - If this option is turned off,
TrueHiddenLine mode looks the same as HiddenLine mode. If it is turned on, geometry that
falls behind a surface is dimmed instead of invisible.

Graphics TrueHiddenLine Dim Factor <factor> - This determines how dim the lines
behind surfaces are drawn. Factor may range from O (invisible) to 1 (full brightness).

Graphics TrueHiddenLine Pattern <pattern> - This determines what pattern is used to
draw lines behind surfaces (e.g. dotted, dashed, etc.; see online help for a list of valid line
patterns).

There is another option that is similar to a graphics mode, set with the command
Graphics Use Facets [On|Off]

This command determines how shaded and filled surfaces are drawn when they are meshed. If
Graphics Use Facets is on, the mesh facets (element faces) are used to shade the model. This is

30 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

particularly helpful for curved surfaces which may cut through some of the mesh faces; see
Figure 3-3.

Figure 3-3: A meshed cylinder shown with graphics facets off (left) and graphics facets on
(right); note how geometry facets on the curved surface obscure mesh edges when facets are
off.

Drawing and Highlighting Entities
In order to effectively visualize the model, it is often necessary to draw an entity by itself, or
several entities as a group. This is easily done with the command
Draw {Entity specification} [Add]

where Entity specification is an entity list as descibed in “Entity Specification” on page 25. This
command clears the display before drawing the specified entity or entities Afithe@ption is
specified, the given entity is added to what is already drawn on the screen. The entities specified
in this command are drawn regardless of their visibility setting (see “Geometry and Mesh Entity
Visibility” on page 41 for more details about visibility).

Entities can be highlighted using the command
Highlight {Entity specification}

This command highlights the specified entities in the current display with the current highlight
color. Highlighting can be removed using the command

Graphics Clear Highlight

To return to the normal display of the entire model, Dsplay .
Drawing Other Objects

In addition to the common geometry, mesh and genesis entities, other objects may be drawn
with variations of the Draw command. As with the other Draw commands, tyisglay after
drawing these objects will restore the scene to its normal display.

* Entity Normals
The normal to a surfaces, face, or tri may be drawn with the command

Draw {Surface | Face | Tri} <id_range> Normal [Length <length>] [Face | Tri]

The normal is drawn as a line of lenddngth (a length of 1 is the default), starting at the
centroid of the entity, pointing in the direction of the entity’s normal. If the normal is being

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual31

CHAPTER 3

Environment

drawn for a surface, the normal for all faces or tris that belong to a surface may be drawn by
using the~ace or Tri qualifier with the command.

» Volume Sources and Targets
Once the source and target surfaces have been set on a volume that will be meshed with the
sweep algorithm, the source and target may be visually identified with the command
Draw Volume <volume_id_range> [Source][Target] [Length <size>]

If the Source keyword is included, the normal of the source surface or surfaces will be drawn
in green into the specified volume. If tAarget keyword is included, the normal of the target
surface or surfaces will be drawn in red into the specified volume.

* Model Axis
The model axis may be drawn with the command
Draw Axis [Length <length>]

The axis is drawn as three lines beginning at the model origin, one line in each of the three
coordinate directions. The length of those lines is determined Hetiggh parameter, which
defaultsto 1.

Mouse-Based View Navigation

The mouse can be used to navigate through the scene using various view transformations. These
transformations are accomplished by clicking a mouse button in the graphics window and
dragging, sometimes while holding a modifier key such as Shift or Control. When run with
graphics on, CUBIT is always in mouse mode; that is, mouse-based transformations are always
available, without needing to enter a CUBIT command.

Mouse-based view transformations are accomplished by placing the pointer in the graphics
window and then either holding down a mouse button and dragging, or by clicking on a location
in the graphics window. Some functions also require one or more modifier keys to be held down;
the modifier keys used in CUBIT are Shift (Sh), Control (Ctl), and Alt. Each of the available
view transformations has a default binding to a mouse button-modifier key combination; this
binding can be changed by the user if desired. Transformations and button mappings are
summarized in Table 3-4.

Table 3-4: Default Mouse Function Mappings

Function Description Binding

Rotate Rotates the scene about the camera axis. Dragging the mouse near|the Bl

center of the graphics window will rotate about the camera’s X- or Y-axis;

dragging the mouse near the edge of the window will rotate about the Ziaxis

(i.e. about the camera’s line of sight). Type @ the graphics window to

see the dividing line between the two types of rotation.
Zoom Zooms the scene in or out by clicking the mouse in the graphics window B2

and dragging up or down.
Pan "Drags" the scene around with the mouse. B3
Rotate XY Rotates the scene about the X- or Y- camera axis but not about the Z-axis. Alt-B1
Rotate Z Rotates the scene about the Z- camera axis (the camera’s line of sight). ShiAlt-B1

CUBIT Version 4.0 Reference Manual

Document Version 4/18/00

CHAPTER 3 . Environment

Table 3-4: Default Mouse Function Mappings

Function Description Binding
Navigational Zooms the scene by moving both the camera and its focal point forward. ShiB2
Zoom
Telephoto Zooms the scene by decreasing the field of view. Sh-Ctl{B2
Zoom

Zoom Cursor | Zooms the scene after user clicks on opposite corners of a box surroundingtl-B2
(Click) the area to zoom.

Zoom Cursor | Zooms the scene after user drags a box around the area to zoom. Alt-B2
(Drag)
Pan Cursor Click on new center of view. Sh-B3

Changing the View Transformation Button Bindings

The default mapping of functions to mouse buttons, described in Table 3-4 above, can be
modified. There are two ways to assign a function to a button/modifier combination.

First, you can use the command
Mouse Function <function_id> Button <1|2|3> [Shift][Control][Alt].
TypeHelp Mouse Function to see a list of function ids that may be used in this command.

Second, you can assign functions interactively. To do so, first put the pointer into a graphics
window and then hit thé key. On-screen instructions will lead you through the rest of the
process.

There is also a simplified function that will map the basic Rotate, Zoom, and Pan functions to
unmodified mouse buttons:

Mouse ButtonMap Rotate <rotate button> Zoom <zoom_button>
Pan <pan_button>

This function will not change the bindings to mouse buttons plus modifier keys.
Navigational Drawing Mode

Navigational drawing is entered when a mouse button is pressed in a graphics window, and is
exited when the button is released. While performing navigational drawing, the scene can be
drawn in anavigational drawing modéo speed up rendering; the display is returned to the

default drawing mode after the button is released. There are three navigational drawing modes:

» Wireframe Geometry Mode - In Wireframe Geometry Mode, any visible mesh disappears
and the view changes to a wireframe drawing of the visible geometry. This mode makes
transformations faster, and often makes it easier to locate a feature of interest.

Wireframe Geometry Mode is the default navigational drawing mode, and is enabled at
startup. Disable the mode by typing W* while the mouse is in the graphics window.
Reenable the mode by again typing/@"while the mouse is in the graphics window.

The Wireframe Geometry Mode can also be used temporarily as the default drawing mode by
typing a P’ while the mouse is in the graphics window. This allows multiple mouse

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual33

CHAPTER 3 . Environment

transformations without having to wait for a complicated scene to be rendered in hiddenline
or smoothshade mode after each transformation.

» Model Bounding Box Mode- This mode draws a single box representing the bounding box
of all existing geometry. This mode is even faster than wireframe geometry mode, but does
not indicate the location of individual entities.

This mode may be active at the same time as any other mode, and overrides the other modes
when a mouse button is pressed. This mode is off by default. Switch to this mode by typing a
‘B’ while the mouse is in the graphics window. TypinB''again will switch to Body
Bounding Box Mode (described below). Typing'’'a third time will disable the bounding

box modes.

» Body Bounding Box Mode- This mode is similar to Model Bounding Box Mode, but draws
a separate bounding box for each body in the model. This makes it slightly easier to locate
items in the scene, without a substantial penalty in rendering speed. Switch to this mode by
typing a ‘B’ while in Model Bounding Box mode, and while the mouse is in the graphics
window.

It is also possible to remain in the normal drawing mode while navigating with the mouse. To
do so, disable wireframe geometry mode and the bounding box modes.

Saving and Restoring Views

After performing view transformations, it may be useful to return to a previous view. A view is
restored by setting the graphics camera attributes to a given set of values. The following keys,
pressed while the pointer is in the graphics window, provide this capability:

V - Restores the view as it was the last tiBisplay was entered.

F1 to F12 - These function keys represent 12 saved views. To save a view, hold down the
Control key while pressing the function key. To restore that view later, press the same
function key without the Control key.

You can also save a view by entering the command
View Save [Position <1-12>] [Window <window_id>]

The current view parameters will be stored in the specified position. If no position is specified,
the view can be restored by pressivign the graphics window. If a position is specified, the
view can be restored with the command

View Restore Position <1-12> [Window <window_id>]

These commands are useful in as entries in a .cubit startup file. For example, to always have F1
refer to a front view of the model, the following commands could be entered into a .cubit file:

From0O01

At000

Up010

Graphics Autocenter On
View Save Position 1

The first three commands set the orientation of the camera. The fourth command ensures that
the model will be centered each time the view is restored. The final command saves the view
parameters in position 1. The view can be restored by pressing F1 while the pointer is in a
graphics window.

34 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

Selecting Entities with the Mouse

Many of the commands in CUBIT require the specification of an entity on which the command
operates. These entities are usually specified using an object type and ID (see “Entity
Specification” on page 25) or a name. The ID of a particular entity can be found by turning
labels on in the graphics and redisplaying; however, this can be cumbersome for complicated
models. CUBIT provides the capability to select with the mouse individual geometry, mesh or
genesis entities. After being selected, the ID of the entity is reported and the entity is highlighted
in the scene. After selecting the entities, other actions can be performed on the selection. The
various options for selecting entities in CUBIT are described below, and are summarized in
Table 3-5.

Table 3-5: Picking and key press operations on the picked entities.

Key Action
Ctl-B1 Pick entity of the current picking type.
Sh-Ctl-B1 Add picked entity of the current picking type to current picked entity list.
Tab Query-pick; pick entity of current picking type which is below the last-picked entity.
N Lists what entities are currently selected
L Lists basic information about each selected entity. This is similar to entering a List command

for each selected entity

G Lists geometric information about the selection. As if the List Geometry command wefe
issued for each selected entity. If there are multiple entities selected, a geometric summary of
all selected entities is printed at the end, including information such as the total bounding box

of the selection

I Makes the current selection invisible. This only affects entities that can be made invisiblg from
the command line (i.e., geometric entities).

Shift-Z Zoom in on the current selection.

E Echo the ID of the selection to the command line.

A Add the current selection to the picked group. Only geometry will be added to the group (not
mesh entities). If a selected entity is already in the picked group, it will not be added a s¢cond
time.

R Remove the current selection from the picked group. If a selected entity was not found jin the

picked group, this command will have no effect.

C Clear the picked group. The picked group will be empty after this command.

Lists what entities are currently in the picked group.

D Display and select the entities in the picked group.

Entity Selection

Selecting entities typically involves two steps:

1) Specifying the type of entity to select

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual35

CHAPTER 3 . Environment

Clicking on the scene can be interpreted in more than one way. For example, clicking on a curve
could be intended to select the curve, a mesh edge owned by the curve, or a sideset containing
the curve. The type of entity the user intends to select is callgicttieg type

In order for CUBIT to correctly interpret mouse clicks, the picking type must be indicated. This
can be done in one of two ways. The easiest way to change the picking type is to place the
pointer in the graphics window and enter the dimension of the desired picking type and an
optional modifier key. The dimension corresponds to the dimension of the objects being picked
(O-vertex/node, 1-curvel/edge, 2-surface/face, 3-volume/element, 4-body). If a Shift modifier
key is held while typing the dimension, the picking type is set to the mesh entity of
corresponding dimension, otherwise the geometry entity of that dimension is set as the picking
type. For example, typing 2 while the pointer is in the graphics window sets the picking type so
that geometric surfaces are picked; typing Shift-1 sets the picking type so that mesh nodes are
picked.

The picking type can also be set using the command
Pick <entity type>

where entity type is one of the followin@ody, Volume , Surface, Curve, Vertex, Hex,
Tet, Face, Tri, Edge, Node, orDicerSheet .

2) Selecting the entities.

To select an object, hold down the control key and click on the entity (this command can be
mapped to a different button and modifiers, as described in the section on interactive view
navigation). Clicking on an entity in this manner will first de-select any previously selected
entities, and will then select the entity of the correct type closest to the point clicked. The new
selection will be highlighted and its name will be printed in the command window.

Query-Selection

If the highlighted entity is not the object you intended to selected, press the Tab key to move to

the next closest entity. You can continue to press tab to loop through all possible selections that
are reasonably close to the point where you clicked. Shift-Tab will loop backwards through the

same entities.

Multiple Selected Entities

To select an additional entity, without first clearing the current selection, hold down the shift and
control keys while clicking on an object. You can select as many objects as you would like. By
changing the picking type between selections, more than one type of entity may be selected at
a time. When picking multiple entities, each pick action acts as a toggle; if the entity is already
picked, it is “unpicked”, or taken out of the picked entities list.

Information About the Selection

When an entity is selected, its name, entity type, and ID are printed in the command window.
There are several other actions which can then be performed on the picked entity list. These
actions are initiated by pressing a key while the pointer is in the graphics window. Table 3-5

summarizes the actions which operate on the selected entities.
Picked Group

There is a special group whose contents can be altered using picking. This group is named
picked , and is automatically created by CUBIT. Other than its relationship to interactive

36 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

picking, itis identical to other groups and can be operated on from the command line. Like other
groups, only geometric entities can be held in the picked group. Table 3-5 lists the graphics
window key presses used with thieked group.

Note: It is important to distinguish between the current selection and the picked group
contents. Clicking on a new entity will select that entity, but will not add it to the picked
group. De-selecting an entity will not remove an entity from the picked group.

Substituting the Selection into Commands

There are three ways to use mouse-based selection to specify entities in commands.
e The selection Keyword

You may refer to all currently selected entities by using the vegddction in a command; the
picked type and ID numbers of all selected entities will be substituted directlsetection .
For example, if Volume 1 and Curve 5 are currently selected, typing

Color selection Blue
is identical to typing
Color Volume 1 Curve 5 Blue.
Note that theselection keyword is case sensitive, and must be entered as all lowercase letters.

e Echoing the ID of the Selection

Typing ane into a graphics window will cause the ID of each selected entity to be added to the
command line at the current insertion point. This is a convenient way to use entities of which
you don't already know the name or ID.

As an added convenience, the picking type can be set based on the last word on the command
line using the~ key. For example, a convenient way to set the meshing scheme of a cylinder to
sweep would be as follows:

Volume (hit ~, select cylinder, hit ebcheme Sweep Source Surface (hit ~, select
endcap, hit eYarget (select other endcap, hit e)

The result will be something similar to
Volume 1 Scheme Sweep Source Surface 1 Target 2

Notice that you must use the word Surface in the command, or ~ will not select the correct
picking type.
 Using the Picked Group in Commands

Like other groups, the picked group may be used in commands by referring to it by name. The
name of the picked group fsicked . For example, if the contents of the picked group are
Volume 1 and Volume 2, the command

Draw picked
is identical to

Draw Volume 1 Volume 2
Note thatpicked is case sensitive, and must be entered as all lowercase letters.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual37

CHAPTER 3

. Environment

Mesh Slicing

A volume mesh can be viewed one layer at a time using a visualization tool known as mesh
slicing. This tool divides the elements of one or more volumes into axis-aligned layers, and then
allows the mesh to be displayed one layer at a time. Mesh slicing is especially useful to view the
quality of swept meshes that are axis aligned.

Note: Mesh slicing is only intended to be a rough visualization tool. Because the average
mesh edge length is used to determine the thickness of each layer, a layer may be more
than one element deep. Unstructured meshes, meshes with large variations in edge
length, and non-axis-aligned meshes will be more difficult to visualize with this tool.

Mesh slicing can be started either by entering a keypress in the graphics window, which slices
the mesh of the entire model, or by entering the command

Graphics Slice {Body | Volume} <id_range> Axis {X | Y | Z}
which slices only the bodies or volumes indicated, with a plane along the axis specified.

Key presses in the graphics window which control mesh slicing are summarized in Table 3-6.

Table 3-6: Mesh slicing key press operations.

Key

Action

X, Y,orZ

Initiate mesh slicing using the X, Y or Z plane, respectively.

J Move the slicing plane in the positive coordinate direction.
K Move the slicing plane in the negative coordiante direction.
S Toggles drawing single or multiple slice layers in the view.
Q Exit from mesh slicing mode.

Entity Labels

Most entities may be labeled with text that is drawn at the centroid of the entity.

Mesh entities can be labeled with their ID number or their Genesis ID. The command to control
labels for mesh entities is

Label {Hex | Face | Edge | Node} <On | Off | Genesis>
Genesis ID labels are only valid after exporting a mesh.

Geometric entities can be labeled with their ID number or with other information using the
command

Label {geom_entity type} <On | Off | Ids | Name [Only | Ids] | Interval |
Firmness | Merge | Size | Scheme>

The meaning of each of each label type is listed below. Note that some label types don’t make
sense for every entity type.

* On-Thesameas lds.
* Ids - The CUBIT ID of the entity.

38 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

« Name - Name of the entity, if the entity has been named. Default name otherwise.

» Name Only - Ifthe entity has been named, use the name as the label. Otherwise, don’tuse a
label.

* Name ID - If the entity has been named, use the name as the label. Otherwise, use the ID as
the label.

* Interval - The number of intervals set on the entity.

» Firmness - Same as interval, but followed by a letter indicating the firmness of the interval
setting (see chapter 5 for description of firmness settings.)

» Merge - Whether or not the entity has been merged.
* Size - The mesh size set on this entity.
» Scheme - The meshing scheme set for this entity.

Labels for groups of entity types can be turned on or off with the command
Label <All | Geometry | Mesh> <On | Off>

Colors

Color Definitions

CUBIT has a palette of 85 pre-define colors; users may also define their own colors in addition
to those define by Cubit. Each color is defined by a name and by its RGB components, which
range from 0 to 1.

To define a color, use either of the commands
Color Define “<name>" RGB <r g b>
Color Define “<name>" R <r> G <g> B .

A maximum of 15 user-defined colors may be stored at one time, so it may be necessary to clear
a color definition. This is done with the command

Color Release “<color_name>"
Color names can be listed with the command
Help Color

They are also listed in the appendix of this manual, along with their RGB definitions. To view
a chart of color names and IDs, including those for user-defined colors, use the command

Draw Colortable
Specifying Colors in Commands

There are three ways to refer to a color in a command. They are
* ID <id>

* name

* User “name”

The first of these three methods may be used for either pre-defined or user-defined colors. The
second method is only valid for pre-defined colors, while the third is only valid for user-defined
colors. Some examples of specifying colors in commands are:

e ByID-ColorVolume 1ID5

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual39

CHAPTER 3 . Environment

» By Name (Pre-Defined)Color Volume 1 Red
» By Name (User-Defined)€olor Volume 1 User “mycolor”

Assigning Colors

Colors can be assigned to all geometric entities except for vertices and to some other objects.
To assign a color to an entity or other object, use one of the following commands.

Color <entity_specifier> [Mesh][Geometry] [<color> | default]

Color {NodeSet | SideSet | Block} <id_range> <color>

Color Background <color>.

Color Highlight <color>

Color Axis Text <color>

Color {Curve | Vertex | Hex | Face | Edge | Node | Tet | Tri} Labels <color>
Color Lines <color>

Including theMesh keyword will change the color of the mesh belonging to the specified entity,
without changing the color of the entity geometry itself. Conversely, includingstametry
keyword will change the geometry color without changing the mesh color. Including both
keywords is identical to including neither keyword.

Colors are inherited by child entities. If you explicitly set the color for a volume, for example,
all of its surfaces will also be drawn in that color. Once you assign a color to an entity, however,
it will remain that color and will no longer follow color changes to parent entities. To make an
entity follow the color of its parent after having explicitly set another color,Disfault as the

color name in the color command.

Colors can also be assigned to nodesets, sidesets, and element blocks. These colors do not take
effect, however, unless the nodeset, sideset, or element block is drawn with a Draw command.

The background color and the color used to draw highlighted entities can be changed to any
color.

By default, the axes are labeled with a white X, Y, and Z, indicating the three primary coordinate
directions. If the background is changed to white, these labels are impossible to read; the color
used to draw axis labels can be changed to any color. Changing the axis label color will change
the text color for both the model axis and the triad (corner axis).

When several entity types are labeled, it can become difficult to determine which labels apply
to which entities. To help distinguish which entities are being referred to by the labels, you may
want to change the color of labels for specific entity types.

When a meshed surface is drawn in a shaded graphics mode, the mesh edges are not drawn in
the same color as the surface. This is to prevent confusion between mesh edges and geometric
curves, and to make the mesh edges more visible. The color used to draw mesh edges in this
situation is known as the line color, and is gray by default; this color can be changed to any color.

40 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

Geometry and Mesh Entity Visibility

The visibility of geometric and mesh entities can be turned on or off, either individually, by
entity type, by general entity class (mesh, geometry, etc.), or globally. The commands to set the
visibility are:

{geom_list} [Mesh][Geometry] Visibility [On|Off]

{Vertex | Hex | Face | Edge | Node} Visibility [On | Off]

Mesh Visibility [On | Off]

Geometry Visibility [On | Off]
If the Mesh keyword is included, only the visibility of the mesh belonging to the specified

entity is affected. Similarly, if th&seometry keyword is included, only the visibility of the
geometry is affected. Including neither keyword is identical to using both keywords.

Invisibility of geometry is inherited; visibility is not. For example, if a volume is invisible, its
surfaces are also invisible unless they also belong to some other visible volume. As another case,
if the volume is visible, but a surface is set to invisible, the surface will not follow its parent’s
visibility setting, but will remain invisible.

The visibility of some entity types has special meaning. If hex visibility is on, internal mesh
edges become visible. Face visibility only refers to external faces, and faces are only visible
when in a shaded graphics mode.

After turning mesh visibility off, all mesh will remain invisible until mesh visibility is turned on
again. This is true no matter what other visibility commands are entered.

Similarly, after turning geometry visibility off, all geometry will remain invisible until geometry
visibility is turned on again. This is true no matter what other visibility commands are entered.

Graphics Camera

One way to change what is visible in the graphics window is to manipulate the camera used to
generate the scene. A scene cameraaltaibutesdescribed below, and depicted graphically in
Figure 3-4. The values of these camera attributes determine how the scene appears in the
graphics window.

* Position (From) - The location of the camera in model coordinates.

 View Direction (At) - The focal point of the camera in model coordinates.

» Up Direction (Up) - The pointindicating the direction to which the top of the camerais
pointing. The Up point determines how the camera is rotated about its line of sight.

* Projection - Determines how the three-dimensional model is mapped to the two-dimensional
graphics window.

» Perspective Angle Twice the angle between the line of sight and the edge of the visible
portion of the scene.

At any time, the camera can be moved back to its original position and view using the command
View Reset
To see the current settings of these attributes, use the command

List View

Document Version 4/18/00 CUBIT Version 4.0 Reference Manua41

CHAPTER 3

View From

. Environment

A View Up

Perspective Angle

View At

Figure 3-4: Schematic of From, At, Up, and Perspective Angle

The current value of the view attributes will be printed to the terminal window, along with other
useful view information such as the current graphics mode and the width of the current scene in
model coordinates.

Changing Camera Attributes Using Rotate, Zoom Pan

Commands used to affect camera position or other functions are listed below. All rotation,
panning, and zooming operations can includeAhignation Steps qualifier, makes the image

pass smoothly through the total transformation. Animation also allows the user to see how a
transformation command arrives at its destination by showing the intermediate positions.

» Rotation

Rotate <degrees> About [Screen | Camera | World] {X | Y | Z}
[Animation Steps <number_steps>]

Rotate <degrees> About Curve <curve> [Animation Steps <number_steps>]

Rotate <degrees> About Vertex <vertex_1> Vertex <vertex 2>
[Animation Steps <number_steps>]

Rotation of the view can be specified by an angle about an axis in model coordinates, about the
camera’s “At” point, or about the camera itself. Additionally rotations can be specified about
any general axis by specifying start and end points to define the general vectogftheand

rule is used in all rotations.

Plain degree rotations are in tBereen coordinate system by default, which is centered on the
camera’s At point. Th€amera keyword causes the camera to rotate about itself (the camera’s
From point). ThewWorld keyword causes the rotation to occur about the model’s coordinate
system. Rotations can also be performed about the line joining the two end vertices of a curve
in the model, or a line connecting two vertices in the model.

CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

e Panning
Pan [{Left|Right} <factorl>] [{Up|Down} <factor2>] [Screen | World]
[Animation Steps <number_steps>]
Pan Cursor

Panning causes the camera to be moved up, down, left, or right. In terms of camera attributes,
the From point and At point are translated equal distances and directions, while the perspective
angle and up vector remain unchanged. The scene can also be panned by a factor of the graphics
window size.

Screen andWorld indicate which coordinate systerfiactor> is in. If Screen is indicated
(the default)<factor> is in screen coordinates, in which the width of the screen is one unit. If
World is indicated<factor> is expressed in the model units.

ThePan Cursor command is used to indicate the position of the desired view center with the
mouse.

e Zooming

Zoom Cursor [Click | Drag] [Animation Steps <number_steps>]
Zoom Screen <factor> [Animation Steps <number_steps>]

Zoom <xX_min> <y_min> <x_max> <y_max>
[Animation Steps <number_steps>]

Zoom {Group | Body | Volume | Surface | Curve | Vertex | Hex | Tet | Face | Tri
| Edge | Node} <id_range> [Animation Steps <number_steps>]
Zoom Reset
After enteringZoom Cursor , move the cursor to the graphics window. If fBkck option was
entered, click on opposite corners of the desired zoom area; otherwise, drag a box around the

area to zoom by holding down the left mouse button until the desired area is boxditknis
the default option for this command.

Zoom Screen will move the camerafactor> times closer to its focal point. The result is that
objects on the focal plane will appedactor> times larger.

Zooming on a specific portion of the screen is accomplished by specifying the zoom area in
screen coordinates; for exampigom 0 0 .25 .25 will zoom in on the bottom left quarter of
the screen.

Zooming on a particular entity in the model is accomplished by specifying the entity type and
ID after enteringZoom . The image will be adjusted to fit bounding box of the specified entity
into the graphics window, and the specified entity will be highlighted.

To center the view on all visible entities, use Zlo®m Reset command.
Changing Camera Attributes Directly

Camera attributes are most easily modified using interactive mouse manipulation (see “Mouse-
Based View Navigation” on page 32) or using the rotate, pan and zoom commands described

Document Version 4/18/00 CUBIT Version 4.0 Reference Manua43

CHAPTER 3

Environment

above. However, the camera attributes can also be modified directly with the following
commands:

From <xy z>

At <xy z>

Up <xy z>

Graphics Perspective <On|Off>
Graphics Perspective Angle <degrees>

If graphics perspective is on, a perspective projection is used; if graphics perspective is off, an
orthographic projection is used. With a perspective projection, the scene is drawn as it would
look to a real camera. This gives a three-dimensional sense of depth, but causes most parallel
lines to be drawn non-parallel to each other. If an orthographic projection is used, no sense of
depth is given, but parallel lines are always drawn parallel to each other.

In a perspective view, changing the perspective angle changes the field of view by changing the
angle from the line of sight to the edge of the visible scene. The effect is similar to a telephoto
zoom with a camera. A smaller perspective angle results in a larger zoom. This command has
no effect when graphics perspective is off.

Graphics Windows

Window Size and Position

By default, CUBIT will create a single graphics window when it starts up (to run CUBIT
without a graphics window, includenographics on the command line when launching
CUBIT.) The graphics window position and size is most easily adjusted using the mouse, like
any other window on an X-windows screen. However, the size of the graphics window can also
be controlled using the following commands:

Graphics WindowSize <width_in_pixels> <height_in_pixels>
Graphics WindowSize Maximum

In addition, the graphics window size and position can be controlled by placing the following
line in the user’'s .Xdefaults file:

cubit.graphics.geometry XxY xpos ypos

where theX andY are window width and height in pixels, respectively, apds andypos are
the offsets from the lower left hand corner.

Using Multiple Windows

You can use up to ten graphics windows simultaneously, each with its own camera and view.
Each window has an ID, from 1 to 10, shown in the title bar of the window. Commands that
control camera attributes apply to only one window at a timeattire windowCurrently, the
display lists of all windows are identical.

The following commands are used to create, delete, and make active additional graphics
windows.

Graphics Window Create [ID]
Graphics Window Delete <ID>
Graphics Window Active <ID>

44 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

Hardcopy Output

The easiest way to make an image file of a graphics window is to use a screen capture program
outside of CUBIT, such as xv. However, CUBIT also has the ability to save its graphical output
to files of various formats. The commands for generating hardcopy output files are:

Hardcopy ‘<filename>' [Encapsulated | Postscript | Eps] [Color |
Monochrome] [Window <window_id=active>]

Hardcopy ‘<filename>" Pict [xsize <xpixels>] [ysize <ypixels>]
[Window <window_id=active>]

Hardcopy ‘<filename>’ Cgm [ansi | cals | cleartext]
[Window <window_id=active>]

Hardcopy ‘<filename>" Hpgl [Landscape | Portrait] [xsize <width>
ysize <height>] [window <window_id=active>]

Each of these commands saves the view in the specified window (or the current window), to the
specified file, in the format indicated. The file can then be sent to a printer or inserted into
another document.

Miscellaneous Graphics Options
In addition to the commands discussed above, there are several other graphics system options
in CUBIT that can be controlled by the user.
* Silhouette Lines

Some shapes, such as cylinders, are drawn with silhouette lines; these lines don’t represent true
geometric curves, but help visualize the shape of a surface. Silhouette lines can be turned on or
off with the command

Graphics Silhouette [On|Off]
The pattern used to draw silhouette lines can be set using the command

Graphics Silhouette Pattern [solid | dashdot | dashed | dotted | dash_2dot |
dash_3dot | long_dash | phantom]

» LineWidth

This option controls the width of the lines used in the wireframe and hiddenline displays. The
default is 1 pixel wide. The command to set the line width is

Graphics LineWidth <width_in_pixels>
 Highlight LineWidth

This option controls the width of the lines used when highlighting an entity. Setting this to a
width greater than the global line width often makes it easier to locate highlighted entities. If
this setting has not been changed, the line width set in the command above is used. The
command to set the highlighting line width is

Highlight LineWidth <width_in_pixels>

» TextSize

Document Version 4/18/00 CUBIT Version 4.0 Reference Manua45

CHAPTER 3 . Environment

This option controls the size of text drawn in the graphics window. The size given in this
command is the desired size relative to the default size. The command to set the text size is

Graphics Text Size <size>
* Point Size

This option controls the size of points drawn in the graphics window, such as vertices or heads
of vectors; alternatively, the size of points representing nodes or vertices can be set
independently of the global point size. The commands to set the point sizes are

Graphics Point Size <size>
Graphics [Node | Vertex] Point Size <size>
» Point Style

Graphical points are drawn as dots by default. They may be drawn as other symbols, such as
plus sign. Point styles for nodes and vertices can also be set independently of the global point
style. To change the point style, use the commands

Graphics Point Style <style_integer>

Graphics [Node | Vertex] Point Style <style_integer>
TypeHelp Point Style to see a list of valid style integers and the symbol they represent.
» Graphics Status
All graphics commands can be disabled or re-enabled with the command

Graphics [On | Off]

While graphics are off, changes in the model will not appear in the graphics window, and all
graphics commands will be ignored. When graphics are again turned on, the scene will be
updated to reflect the current state of the model.

* Model Axis

The model axis may be drawn in the scene at the model origin. The axis is controlled with the
command

Graphics Axis [Type <AXIS | Origin>] [on | off]

The command is used to specify whether the model axis is visible, and to determine how the
axis is drawn. If you includ&ype Axis , the axis will be drawn as three orthogonal lines; if you
includeType Origin , the axis will be drawn as a circle at the model origin.

» Corner Axis (Triad)

By default, an axis appears in the corner of the graphics window. This corner axis, also called
the triad, can be disabled or re-enabled with the command

Graphics Triad [On | Off]
» Scene Border

By default, there is a black border drawn around the scene. To remove or restore the border, use
the command

Graphics Border [On | Off]

46 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual47

CHAPTER 3 . Environment

48 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

v Graphics Enhancements

Draw Location On Curve

Some commands require you to specify a location on a curve (i.e., webcutting with a plane normal to a curve). This
location can be previewed with the following options:

1) A fraction along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
2) A distance along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
3) An xyz position that is moved to the closest point on the given curve.

4) The position of a vertex that is moved to the closest point on the given curve.

Draw Location On Curve <curve id>
{Fraction <f> | Distance <d> | Position <xval><yval><zval> |
Close_To Vertex <vertex_id>}
[[From] Vertex <vertex_id> (optional for 'Fraction' & 'Distance’)]

Draw Plane

The ability to preview a plane prior to webcutting or creating the plane is possible with the following commands:

Draw Plane Vertex <v1_id> [vertex] <v2_id> [vertex] <v3_id>
[[intersecting] Body <id_range>] [extended percentage|absolute <val>]
[color 'color_name']

Draw Plane Surface <surface_id>
[[intersecting] Body <id_range>] [extended percentage|absolute <val>]
[color 'color_name']

Draw Plane {xplane|yplane|zplane} [offset <val>]
[[intersecting] Body <id_range>] [extended percentage|absolute <val>]
[color 'color_name']

Draw Plane Normal To Curve <curve_id>
{fraction <f> | distance <d> | position <xval><yval><zval>
| close_to vertex <vertex_id>}
[[from] vertex <vertex_id> (optional for 'fraction' & 'distance")]
[[intersecting] Body <id_range>] [extended percentage|absolute <val>]
[color 'color_name']

The first passes a plane through 3 vertices, the second uses an existing plane, the third draws a plane normal to one of
the global axes, and the fourth draws a plane normal to the tangent of a curve at a location along the curve. By
default, the commands draw the plane just large enough to intersect the bounding box of the entire model with mini-
mum surface area. Optionally, you can give a list of bodies to intersect for this calculation. You can also extend the
size of the surface by either a percentage distance or an absolute distance of the minimum area size. The default color
is blue, but you can specify a different one. See Appendix B of the CUBIT Users Guide for available colors in

CUBIT.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manua49

CHAPTER 3 . Environment

Draw Cylinder
The ability to preview a cylinder prior to webcutting is possible with the following command:

Draw Cylinder Radius <val> Axis {x|y|z|Vertex <id_1> Vertex <id_2>|
<xyz values>} [Center <x_val> <y val> <z_val>]
[[intersecting] Body <id_range>] [extended percentage|absolute <val>]
[color 'color_name']

The cylinder is defined by a radius and the cylinder axis. The axis is specified as a line corresponding to a coordinate
axis, the normal to a specified surface, two arbitrary points, or an arbitrary point and the origin. The center point
through which the cylinder axis passes can also be specified.

By default, the commands draw the cylinder just large enough to just intersect the bounding box of the entire model.
Optionally, you can give a list of bodies to intersect for this calculation. You can also extend the length of the cylin-
der by either a percentage distance or an absolute distance of the cylinder length. The default color is blue, but you
can specify a different one. See Appendix B of the CUBIT Users Guide for available colors in CUBIT.

Entity Parsing

Entity parsing has been extended to allow traversal across geometry and mesh entities. For example, the following
commands are now valid:

Draw Node in Surface 3

Draw Surface in Edge 362

Draw Hex in Face in Surface 2

Draw Node in Hex in Face in Surface 2
Draw Edge in Node in Surface 2

v Listing Information

The List commands print information about the current model and session. There are five
general areadvlodel Summary, Geometry, Mesh, Special Entiteesl CUBIT Environment

The descriptions of these areas includes example output based on the model generated by the
journal file in Table 3-7. The model consists of a 1x2x3 brick meshed with element size 0.1.

List Model Summary

The following commands print identical summaries of the model: the number of entities of each
geometric, mesh, and special type; see Table 3-8 for sample output.

List Model
List Totals

50 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

List Geometry

The following commands list information about the geometry of the model.
list names [group|body|volume|surface|curve|vertex|all]
list {group | body | volume | surface | curve | vertex} [range] [ids]
list {geom_list} [Geometry|Mesh [Detail]]
list {group | body | volume | surface | curve | vertex} <range> {x|y|z}

The first command lists the names in use, and the entity type and id corresponding to each name.
Specifyingall lists names for all types; other options list names for a specific entity type. The
names for an individual entity can be obtained by listing just that entity. Sample output from the
list names surface command is shown in Table 3-9. This output shows that, for example,
Surface 2 has the nan@ackSurface

If ids is specified, the second command provides information on the number of entities in the
model and their identification numbers. This can be very useful for large models in which
several geometry decomposition operations have performed. Sample output frdist the
surface idscommand is shown in Table 3-10.

Therange can be very general using the general entity parsing syntax. Usiuge andids

gives a brief synopsis of the local connectivity of the model, e.g. one can list the ids of the
surfaces containing vertex 2; see Table 3-11. An intermediately detailed synopsis can be
obtained by placing the range of entities in a group, then listing the group.

The third command provides detailed information for each of the specific entities. This
information includes the entity’'s name and id, its meshing scheme and how that scheme was
selected, whether it is meshed and other meshing parameters such as smooth scheme, interval
size and count. The entity’s connectivity is summarized by a table of the entity’s subentities and

a list of the entity’s supentities. Also, the nodesets, sidesets, blocks, and groups containing the
entity are listed.

Specifyinggeometry will additionally list the extent of the entity’s geometric bounding box,
the geoemtric size of the entity, and, depending on entity type, other information such as surface
normal. See also tHist {entities} x command below.

Specifyingmeshwill additionally list the number of mesh entities of each type interior to the
entity and on bounding subentitiddesh detail will list the ids of the mesh entities as well,
following the format of thdist ids command above.

Table 3-12 through Table 3-13 show sample output for each of these options.

The fourth command lists the entities sorted by either the x, y, or z coordinate of their geometric
center. For example, in a large, basically cylindrical model centered around z-axis, it is useful
to list the surfaces of a volume sorted by z to identify the source and target sweeping surfaces.
An example for our toy model appears as Table 3-15, “List <entities> x’ Example.,” on
page 57.

List Mesh

The following commands list mesh entity information.
list { hex | face | edge | node } <id_range>

list { hex | face | edge | node } <id_range> ids

Document Version 4/18/00 CUBIT Version 4.0 Reference Manualb1

CHAPTER 3 . Environment

For both of these commands, the range can be very general, following the general entity parsing
syntax. The first command provides detailed information. For an entity, the information includes
its id, owning geometry, subentities and supentities. For a hex, the Exotissaldo listed. For

a node, its coordinates are listed. The second command just lists the entity ids, and is usually
used in conjunction with complex ranges. Table 3-16 gives examples.

List Special Entities

List {special_type} [range]

Special entities include (element) blocks, sidesets and nodesets (representing boundary
conditions), and boundary layers. Like the list geometry and mesh commands, if no range is
specified then the number of entities of the given type is summarized. Otherwise, listing a
special entity prints the mesh and geometry it contains. Sample outpigt fdock, list sideset

andlist nodesetis shown in Table 3-17, Table 3-18, and Table 3-19. (Some special entities are
of interest mainly to developers and are not described here, e.g. whisker sheets, whisker hexes,
and dicer sheets.)

List CUBIT Environment

The user may list Information about the current CUBIT environment suchessage output
settings memory usageandgraphics settings

Message Output Settings

There are several major categories of CUBIT messages.

« Info (Information) messages tell the user about normal events, such as the id of a newly
created body, or the completion of a meshing algorithm.

» Warning messages signal unusual events that are potential problems.

» Error messages signal either user error, such as syntax errors, or the failure of some
operation, such as the failure to mesh a surface.

» Echomessages tell the user what was journaled.

» Debugmessages tell developers about algorithm progress. There are many types of Debug
messages, each one concentrating on a different aspect of CUBIT.

By default, Info, Warning, Error, and Echo messages are printed, and Debug messages are not
printed. Information, Warning and Debug message printing can be turned on or off (or toggled)
with a set command; error messages are always printed. Debugging output can be redirected to
a file. Current message printing settings can be listed.

List {echo | info | warning | debug }
Set {echo | info | warning } [on|off]
[Set] Debug <index> [on|off]

[Set] Debug <index> File <'filename’>

[Set] Debug <index> Terminal

1. The Exodus Idisthe hex’sid in an exported Exodus database, not in the CUBIT model. Before writing the Exodus
database the Exodus Id appears as -1.

52 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3 . Environment

Message flags can also be set using command line optionswaing={on|off} and -
information={on|off} . Debug flags can be set on witltdebug=<setting> , where
<setting> is a comma-separated list of integers or ranges of integers denoting which flags to
turn on. E.g. to set debug flags 1, 3, and 8 to 10 on, the synthebigg=1,3,8-10

In addition to the major categories, there are some special purpose output settings.
[Set] Logging [on|off] [file <flename’>]
List Logging

If logging is enabled, all echo, info, warning, and error messages will be output both to the
terminal and to the logging file.

List Settings

The List Settings command lists the value of all the message flags, journal file and echo
settings, as well as additional information; see Table 3-20. The first section lists a short
description of each debug flag and its current setting. Next come the other message settings,
followed by some flags affecting algorithm behavior.

Graphical Display Information
List view prints the current graphics view and mode parameters; See “Graphics” on page 29.
Memory Usage Information

Users are encouraged to use Unix commands such as ‘top’ to check total CUBIT memory use.
Developers may check internal memory usage with the following command:

List Memory [‘'<object type>']

Without an object type, the command prints memory use for all types of objects.

Table 3-7: Journal file for List Examples

brickx1y2z3

body 1 size 0.1

mesh volume 1

block 1 volume 1

nodeset 1 surface 1

sideset 1 surface 2

group “my_surfaces” add surface 1 to 3

surface 2 name "BackSurface"
surface 3 name "BottomSurface"
surface 1 name "FrontSurface"
surface 4 name "LeftSurface"
surface 5 name "RightSurface"
surface 6 name "TopSurface"”

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual53

CHAPTER 3

Environment

Table 3-8: ‘List Model’ or ‘List Totals’ Example

CUBIT> list model

Model Entity Totals:
Geometric Entities:
2 groups
1 bodies
1 volumes
6 surfaces
12 curves
8 vertices

Mesh Entities:
6000 hexes
0 pyramids
0 tets
7876 faces
0 tris
9854 edges
7161 nodes

Special Entities:
1 element blocks
1 sideSets
1 nodesets

Table 3-9: ‘List Names’ Example

CUBIT> list names surface
Name Type Id

BackSurface Surface 2
BottomSurface Surface 3
FrontSurface Surface 1
LeftSurface Surface 4

RightSurface Surface 5
TopSurface Surface 6

Table 3-10: ‘List Surface [range] Ids’ Examples

CUBIT> list surface ids
The 6 surface ids are 1 to 6.
CUBIT> list surf ids
The 108 surface ids are 192 to 266, 268 to 271, 273 to 301.

54 CUBIT Version 4.0 Reference Manual

Document Version 4/18/00

CHAPTER 3 . Environment

Table 3-11: Using ‘List’ for Querying Connectivity.

CUBIT> list surface in vertex 2 ids
The 3 entity ids are 1, 5, 6.

CUBIT> group “v2_surfs” equals surface in vertex 2
CUBIT> list v2_surfs

Group Entity 'v2_surfs’ (Id = 3)

It owns 3 entities: 3 surfaces.

Owned Entities: Mesh Scheme Interval:
Name Type Id +is meshed Count Size
FrontSurface Surface 1 map+ 1H 0.1
TopSurface Surface 6 map+ 1H 0.1
RightSurface Surface 5 map+ 1H 0.1

Table 3-12: ‘List Group Mesh Detail’ Example

CUBIT> list my_surfaces mesh detall
Group Entity 'my_surfaces’ (Id = 2)
It owns 3 entities: 3 surfaces.

Owned Entities: Mesh Scheme Interval: Edge
Name Type Id +ismeshed Count Size Length
FrontSurface Surface 1 map+ 1H 0.1
BackSurface Surface 2 map+ 1H 0.1
BottomSurface Surface 3 map+ 1H 0.1

Mesh_Information
Element_Type Interior Boundary Total
Face 700 0 700
Edge 1300 180 1480
Node 603 178 781

Note for groups
'interior’ elements are inside one of the entities explicitly in the group and
‘’boundary’ elements are on a subentity that is not explicitly in the group.

Mesh id ranges follow.
The 700 interior face ids are 1 to 700.
The 1300 interior edge ids are 61 to 430, 491 to 860, 921 to 1480.
The 180 boundary edge ids are 1 to 60, 431 to 490, 861 to 920.
The 1480 total edge ids are 1 to 1480.
The 603 interior node ids are 61 to 231, 292 to 462, 521 to 781.
The 178 boundary node ids are 1 to 60, 232 to 291, 463 to 520.
The 781 total node ids are 1 to 781.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manualb5

CHAPTER 3 .

Environment

Table 3-13: ‘List Surface Geometry’ Example

CUBIT> list surface 1 geometry
Surface Entity 'FrontSurface’ (Id = 1)
Meshed: Yes
Mesh Scheme: map (default)
Smooth Scheme: winslow fixed

Non-periodic

Interval Count: 1

Interval Size: 0.100000

An odd loop: No (Surface 1)
Block Id: 0

Total number of curves: 4
Interval:

Mesh Scheme Arc Edge Vertex Type

Name Id +is meshed Length Count Size Length Start T End_T
Curvel 1 equal+ 2 20H 01 01 1 2
Curve2 2 equal+ 1 10H 01 01 2 3
Curve3 3 equal+ 2 20H 01 01 3 4
Curve4 4 equal+ 1 10H 01 01 4 1
In Volume 1.

Contained in NodeSet 1, Group 2
Bounding Box: x = -0.5 to 0.5 (range 1)
y=-1to 1 (range 2)
z=1.5t0 1.5 (range 0)

Merge Setting = On
Surface Area: 2.000000

Surface Normal: xyz = 0.000000 0.000000 1.000000
At centroid: xyz = 0.000000 0.000000 1.500000

Table 3-14: ‘List Curve’ Example

CUBIT> list curve 1 to 8 by 2
Mesh Scheme Arc Interval: Edge Vertex Type
Name Id +is meshed Length Count Size Length Start T End_T
Curvel 1 equal+ 2 20H 01 01 1 2
In FrontSurface, TopSurface.

Curve3 3 equal+ 2 20H 01 01 3 4
In FrontSurface, LeftSurface.
Curve5 5 equal+ 2 20H 01 01 5 6
In BackSurface, TopSurface.
Curve7 7 equal+ 2 20H 01 01 7 8
In BackSurface, LeftSurface.

56 CUBIT Version 4.0 Reference Manual

Document Version 4/18/00

CHAPTER 3 . Environment

Table 3-15: ‘List <entities> x’ Example.

CUBIT> list surface in volume 1 x
Entities sorted by geometric center x-coordinate:

Name Type Id x_Coordinate
LeftSurface Surface 4 -0.5
RightSurface Surface 5 0
BackSurface Surface 2 0
FrontSurface Surface 1 0
BottomSurface Surface 3 0
TopSurface Surface 6 0.5

Table 3-16: ‘List Hex’ Examples

CUBIT> list hex 5701
Hex 5701 -- Exodus ID =-1
Owned by Volume 1 (Volume 1)
Contains Faces: 6084, 6979, 7065, 7066, 11, 1901
Contains Edges: 8200, 82, 8206, 8204, 3783, 3841, 3842, 11, 9043, 79, 9127, 81
Contains Nodes: 70, 6872, 6901, 71, 12, 1913, 1942, 13

CUBIT> comment ‘find hexes containing both node 70 and 71’
CUBIT> list hex in node 70 and hex in node 71 ids
The 2 entity ids are 5101, 5701.

Table 3-17: ‘List Block’ Example

CUBIT> list block
The 1 block id is 1.

CUBIT> list block 1
Block 1 contains 6000 unexported 3D element(s) of type HEX8.
Owned Entities:
Name Type Id Mesh_Elements
Volume 1 Volume 1 6000

CUBIT> export genesis ‘f.gen’

CUBIT> list block 1
Block 1 contains 6000 exported 3D element(s) of type HEXS.

Table 3-18: ‘List SideSet’ Example

CUBIT> list sideset 1
SideSet 1 contains 200 exported element sides.

Owned Entities:
Name Type Id Mesh_Elements

BackSurface Surface 2 200

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual57

CHAPTER 3 . Environment

Table 3-19: ‘List NodeSet’ Example

CUBIT> list nodeset 1
NodeSet 1: contains 231 nodes.
Owned Entities:
Name Type Id Mesh_Elements
FrontSurface Surface 1 231

Table 3-20: Sample Output from ‘List Settings’ Command

CUBIT> list settings
Debug Flag Settings (flag number, setting, output to, description):

1 OFF terminal Debug Graphics toggle for some debug options.
2 OFF terminal Whisker weaving information

3 OFF terminal Timing information for 3D Meshing routines.
... (many lines deleted) ...

88 OFF terminal General virtual geometry stuff

89 OFF terminal Tet meshing warning and debug messages
echo =0n

info =0On
journal = On, journal file = 'cubit13.jou’
warning =0n

logging = Off

recording = Off

keep invalid mesh = Off

default names = Off

name replacement character =’_’, suffix character ='@’

default blocks = Volumes

Matching Intervals is fast, TRUE; multiple curves will be fixed per interation.

Note in rare cases 'slow’, FALSE, may produce better meshes.

Match Intervals rounding is FALSE; intervals will be rounded towards the user-
specified intervals.

v Obtaining Help

CUBIT can give help on command syntax in two ways. For help on a particular command or
keyword, the user can simply tygeelp <keyword> . Or, if the user has typed part of a
command and is uncertain of the syntax of the remainder of the command, they can type a
guestion mark? and help will be printed for all the keywords currently entered. The results of
this type of command is shown in Table 3-21.

Table 3-21: Help on Volume & Label

CUBIT> volume 3 label fish ?
Help for words: volume & label

Label Volume [on | off | name [only|id] | id | interval | size |
scheme | merge | firmness]

58 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

Biei]

v Introduction...59

v CUBIT Geometry Model Definitions...60

Chapter 4. Geometry

v Automatic Detail Suppression...60
v Geometry Creation...62

v Geometry Transforms...69

v Geometry Booleans...71

v Geometry Decomposition...73

v Virtual Geometry:...75

v Automatic Geometry Decomposition...79
v Geometry Merging...80

v Geometry Groups...82

v Geometry Attributes...82

v Exporting Geometry...85

v New Geometry Commands...85

v Model Import/Export...98

v Groups...100

v Introduction

The geometry model in CUBIT serves as the basis for mesh generation, as it describes at the
resolution of interest to the analysis. The geometric model is also used for the definition of
boundary conditions. The ACIS solid modeling engine is used by CUBIT for solid geometry
operations; CUBIT also builds a representation on top of the ACIS model, which it uses to
define non-manifold topology. The CUBIT representation is also used as a means for defining
virtual geometry, which is used for feature removal and other useful meshing-related tasks.

This chapter begins with definitions of geometric model used in CUBIT and the structure of the
nonmanifold geometry represented by CUBIT. This is followed by sections describing
geometry import, creation, modification and export.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual59

CHAPTER 4 . Geometry

v CUBIT Geometry Model Definitions

Before describing the functionality in CUBIT for viewing and modifying solid geometry, it is
useful to give a precise definition of terms used to describe geometry in CUBIT. In this manual,
the terms topology and geometry are both used to describe parts of the geometric model. The
definitions of these terms are:

Topology: the manner in which geometric entities are connected within a solid model;
topological entities in CUBIT include vertices, curves, surfaces, volumes and bodies.

Geometry: the definition of where a topological entity lies in space. For example, a curve may
be represented by a straight line, a quadratic curve, or a b-spline. Thus, an element of topology
(vertex, curve, etc.) can have one of several different geometric representations.

Topology

Within CUBIT, the topological entities consist afrtices, curves, surfaces, volumesd
bodies Each topological entity has a corresponding dimension, representing the number of free
parameters required to define that piece of topology. Each topological entity is bounded by one
or more topological entities of lower dimension. For example, a surface is bounded by one or
more curves, each of which is bounded by one or two vertices.

A CUBIT Body is defined as a collection of other pieces of topology, including curves, surfaces
and volumes. While a Body is not required for a complete topological model, it is a convenient
mechanism for grouping volumes. Bodies are also used as the basis for solid geometry
operations in CUBIT.

Non-Manifold Topology

In many applications, the geometry consists of an assembly of individual parts, which together
represent a functioning component. These parts often have mating surfaces, and for typical
analyses these surfaces should be joined into a single surface. This results in a mesh on that
surface which is shared by the volume meshes on either side of the shared surface. This
configuration of geometry is loosely referred to as non-manifold topblogy

v Automatic Detail Suppression

Geometry models often have small features which can be difficult to

1. The definition of non-manifold topology used in the field of Topology is much broader than
the definition used here, since it allows additional cases such as dangling faces and edges to exist
in the model. Although dangling faces and edges are allowed in the CUBIT geometry model,
their use is not common. Unless otherwise stated, the use of the term non-manifold in this
manual will refer to the definition given in the text rather than the complete definition known in
the field of Topology.

60 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 . Geometry

resolve in a mesh. In fact, these features are sometimes too small to
see, and are revealed only when the user attempts to mesh the
geometry. Automatic detail suppression can be used to remove those
features from the meshing model (since virtual geometry operations are
used to remove the features, they do not get removed from the actual
CAD model).

Small details are identified using the command:
Detail [<ref entity list>] [identify [dimension <dim> [only]]]

After identifying small details, these details can be drawn or removed

from the model using the commands:

Detail [<ref entity list>] draw [dimension <dim> [only]]
Detail [<ref entity list>] remove [dimension <dim> [only]]

In the commands above, the dimension option is used to identify the
maximum dimension of entities examined for small detail identification
(<dim>is 3, 2, 1 for volumes, surface, and curves, respectively). If
the only identifier is specified, only entities of the specified

dimension are examined, otherwise that dimension and all lower

dimensions are examined.

In some cases, details are identified which the user would like to
retain in the model; likewise, the algorithm used to identify small
details sometimes misses small details the user would like removed
from the model. To include or exclude geometric entities *from the
list of small details to be removed*, the following command is used:

Detail <ref entity list> [include | exclude]

The algorithm used to identify small details relies on the definition

of two quantities, referred to as MEASURSE and SMALL_FRACTION.
MEASURE is a measure of the characteristic size of an entity. For
geometric curves, this is simply the curve’s arc length. For

surfaces, MEASURE is computed as the minimum of two quantities, the
smallest arc length of curves bounding the surface and the hydraulic

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual61

CHAPTER 4 . Geometry

diameter of the surface. (footnote: The hydraulic diameter of a surface
is computed as 4.0*A/P, where A is the surface area and P is the
summed arc lengths of all bounding curves. For circles,

the hydraulic diameter is the circle diameter; for squares, it is the
length of the bounding curves. Similarly, for volumes, the hydraulic
diameter is computed as 6.0*V/A, which evaluates to the diameter and
bounding curve length for perfect spheres and cubes, respectively.)
This MEASURE is compared to the user-assigned mesh interval size for
that entity; if that ratio is below SMALL_FRACTION, the entity is
identified as a small detail. By default, SMALL_FRACTION is set to
1/3.

When removing small curves and surfaces, it is often necessary to
composite surfaces together. When done poorly, this results in large
variations of surface normal in the region local to the small

feature. For this reason, surfaces are not composited unless the dot
product of their normal vectors in the neighborhood of the shared

curve is greater than COMPATIBLE_FRACTION. By default, this quantity
is set to 0.866; this corresponds to an angle between the two surfaces

of 180 degrees plus or minus 30 degrees.

In addition to identifying geometrically small entities, the automatic

detail suppression algorithm also identifies for removal vertices with
valence two. These vertices sometimes appear after performing
decomposition on ACIS-based models. Vertices bounding a single curve
twice (i.e. the vertex bounding a circular curve) are not removed,
however.

v Geometry Creation

There are three primary ways of creating geometry for meshing in CUBIT. First, CUBIT
provides many geometry primitives for creating common shapes (spheres, bricks, etc.) which
can then be modified and combined to build complex models. Secondly, geometry can be
imported into CUBIT from an ACIS “.sat” file. Finally, geometry can be defined by building it
from the “bottom up”, creating vertices, then curves from those vertices, etc. The three methods
for creating geometry in CUBIT will be descibed in detail in this section, followed by methods
for modifying that geometry.

62 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 . Geometry

Geometric Primitives

The geometric primitives supported within CUBIT are pre-defined templates of three-
dimensional geometric shapes. Users can create specific instances of these shapes by providing
values to the parameters associated with the chosen primitive. Primitives available in CUBIT
include the brick, cylinder, torus, prism, frustum, pyramid, and sphere. Figure 4-1 shows a

Pyramid Cylinder

Frustum
(Cone)

Prism

Sphere

Figure 4-1: Geometry primitives available in CUBIT.

sample of the available primitives. Each primitive, along with the command used to generate it
and the parameters associated with it, are described next. For some primitives, several options
can be used to generate them, and are described as well.

General Notes

» Primitives are created and given an ID equal to one plus the current highest body ID in the
model.

 Primitive solids are created with their centroid at the origin or the world coordinate system.

* For primitives with a Height or Z parameter, the axis going through these primitives will be
aligned with the Z axis.

* For primitives with a Major Radius and a Minor Radius, the Major Radius will be along the X
axis, the Minor Radius along the Y axis.

 For primitives with a Top Radius, this radius will be that along the X axis; the Y axis radius
will be computed using the Major, Minor and Top Radii given.

Brick
The brick is a rectangular parallelepiped.
e Command:

[Create] Brick {Width|X} <width> [{Depth|Y} <depth>] [{Height|Z} <height>]
[Bounding Box entity type <id_range>]

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual63

CHAPTER 4 . Geometry

* Notes:

» Acubical brick is created by specifying only the width or x dimension.

* Abrick can be specified to occupy the bounding box of one or more entities, specified on the
command line.

« Ifabounding box specification is used in conjuction with any of the other paramters (X, Y or
Z), the parameters specified override the bounding box results for that or those dimensions.

Cylinder
The cylinder is a constant radius tube with right circular ends.
e Commands:
[Create] Cylinder [height | z] <z-height> radius <x/y-radius>
 Notes:

@g » Acylinder may also be created using fhestum command with all radii set to the same
value.

Prism

The prism is an n-sided, constant radius tube with n-sided planar faces on the ends of the tube.

» Commands:

[create] prism [height | z] <z-height> sides <nsides> radius <radius>

[create] prism [height | z] <z-height> sides <nsides> major [radius] <x-
radius> minor [radius] <y-radius>

* Notes:

» The radius defines the circumradius of the n-sided polygon on the end caps.

« Ifamajor and minor radius are used, the end caps are bounded by a circum-ellipse instead of a
circumcircle.

» The number of sides of a prism must be greater than or equal to three.
» A prism may also be created using fhgamid command with all radii set to the same value.

Frustum

A frustum is a general elliptical right frustum, which can also be thought of as a portion of a
right elliptical cone.

e Commands:

[create] frustum [height | Zz] <z-height> major [radius] <x-radius>
[minor [radjus] <y-radius> top <top-x-radius>]

* Notes:

* Ifused, Major Radius defines the x-radius and Minor Radius the y-radius.

« Ifused, Top Radius defines the x-radius at the top of the frustum; the top y radius is calculated
based on the ratio of the major and minor radii.

Pyramid

64 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

A pyramid is a general n-sided prism.
e Command:

[create] pyramid [height | z] <z-height> sides <nsides> [major [radius] <x-
radius> minor [radius] <y-radius>] [top <top-Xx-radius>]

Sphere

The sphere command generates a simple sphere, or, optionally, a portion of a sphere or an
annular sphere.

e Commands:

[create] sphere radius <radius> [xpositive] [ypositive] [zpositive] [delete]
[inner [radius] <radius>

* Notes:

* If Xpositive, Ypositive, and/or Zpositive are used, a sphere which occupies that side of the
coordinate plane only is generated, or, if the delete keyword is used, the sphere will occupy
the other side of the coordinate plane(s) specified. These options are used to generate
hemisphere, quarter sphere or a sphere octant (eighth sphere).

« Ifthe inner radius is specified, a hollow sphere will be created with a void whose radius is the
specified inner radius.

Torus
The torus command generates a simple torus.
e Command:
[create] torus major [radius] <major-radius> minor [radius] <minor-radius>
 Notes:

» Minor Radius is the radius of the cross-section of the totdgjor Radius is the radius of
the spine of the torus.

» The minor radius must be less than the major radius.

Importing Geometry

CUBIT can import geometry in the ACIS “sat” file format. For compatability with Sandia
legacy applications, FASTQ input decks can also be used to create geometry.

There are many ways to get geometry into the ACIS format, depending on where that geometry
is created. If the geometry is constructed inside CUBIT, the model can be exported directly to
an ACISfile (see). If the model has been constructed in Pro/Engineer, there are several methods
for translating Pro/E files to the ACIS formfaiACIS files can also be exported directly from
several commercial CAD packages, including SolidWdtks AutoCAD, and HP PE/
SolidDesigner.

Importing ACIS Models

1. Forinformation about translating Pro/Engineer files into ACIS format, contact the CUBIT group at cubit-dev@sandia.gov, or
see the web page http://sass2248.jal.sandia.gov/... on the Sandia Internal Restricted Network.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual65

CHAPTER 4 . Geometry

The command used to read an ACIS file is:
Import Acis ‘<acis_sat_filename>’

ACIS files can also be imported using the “-solid” command-line option (see “Executing
CUBIT” on page 4 for details.) Note that the filename must be enclosed in single or double
guotes. This command will create as many bodies within CUBIT as there are bodies in the input
file.

Importing FASTQ Models

Support is available for reading a FASTQ file directly into CUBIT. FASTQ files are imported
into CUBIT using the command:

Import Fastq '<fastq_filename>’
Note that the filename must be enclosed in single or double quotes.

All FASTQ commands are fully supported except for Bmdy command (which is ignored, if
present, as it is unnecessary), the “corn” (corner) line type, and some of the specialized mapping
primitive Scheme commands. Standard mapping, paving, and triangle primitive scheme
commands are handled. The pentagon, semicircle, and transition primitives are not handled
directly, but are meshed using the paving scheme. The FASTQ input file may have to be
modified if theScheme commands use any non-alphabetic characters such as ‘+’, ‘(*, or *)".
Circular lines with non-constant radius are generated as a logarithmic decrement spiral in
FASTQ; in CUBIT they will be generated as an elliptical curve.

Since a FASTQ file by definition will be defined in a plane, it must be projected or swept to
generate three dimensional geometry. CUBIT supports sweeping options to convert imported
FASTQ geometries into volumetric regions.

Importing Exodusll Files

Exodusll finite element data files can be imported under certain conditions. The capability to
generate new geometry from deformed mesh is available for 2D Exodusl! files (4, 8, or 9 node
QUAD or SHELL element types) that do not have enclosed voids (holes surrounded by mesh)
and which were originally generated with CUBIT and exported to Exodusl| witiNtigeset
Associativity option set to on. Th&lodeset Associativity command records the topology

of the geometry into special nodesets which allow CUBIT to reconstruct a new solid model from
the mesh even after it has been deformed. The new solid model of the deformed geometry can
be remeshed with standard techniques or meshed with a sizing function that can also be
imported into CUBIT from the same Exodusll file. CUBIT's implementation of the paving
algorithm can generate a mesh following a sizing function to capture a gradient of any variable
(element or nodal) present in the ExoduslI file.

For more details on importing mesh for geometry, including command syntax, see ... (chapter
5).

Bottom-Up Geometry Creation

CUBIT supports the ability to create geometry from a collection of lower order entities. This is
accomplished by first creating vertices, connecting vertices with curves and connecting curves
into surfaces. Currently bodies or volumes may not be constructed by stitching a set of surfaces
together, however surfaces may be swept or rotated to create bodies or volumes (see “Volume”
on page 68). Existing geometry may be combined with hew geometry to create higher order
entities. For example, a new surface can be created using a combination of new curves and

66 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

curves already extant in the model. Commands and details for creating each type of geometry
entity are given below.

Vertex

The commands available for creating new vertices directly in CUBIT are:
Create Vertex <x><y><z> [on [Curve | Surface] <id>]
Create Vertex <fraction> from Vertex <id> on Curve <id>

A vertex can be created which lies on a curve or surface in the geometric model by specifying
the curve or surface id; the position of the vertex will be the point on the specified entity which
is closest to the position specified on the command.

A vertex can be positioned a certain fraction of the arc length along a curve using the second
form of the command.

Curve

Curves are created by specifying the bounding lower-order topology (i.e. the vertices) and the
geometry (shape) of the curve (along with any parameters necessary for that geometry). There
are three forms of this command:

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id>
[On Surface <surface_id>]

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id> [Vertex] <vertex_id>
[Parabolic]

Create Curve from Curve <curve_id>

The first form of the command creates a straight line or a line lying on the specified surface. If
a surface is used, the curve will lie on that surface but will not be associated with the surface’s

topology.

A parabolic curve is created by specifying a third vertex, which completes the definition of a
parabolic arc which goes through the three vertices.

The third form of the command actually copies the geometric definition in the specified curve
to the newly created curve. The new curve is free floating.

In all cases, the specified vertices are not used directly but rather their positions are used to
create new vertices.

Surface

Surfaces are created in CUBIT by fitting an analytic or spline surface over a set of bounding
curves. The curves must form a closed loop and only one loop of curves may be supplied. The
result is a “sheet body” or a body that has zero measurable volume (it does however have a
volume entity). Booleans and special webcutting commands may be used with to decompose
this body or to use it for decomposing other bodies. Booleans can be used to cut holes out of
these surfaces.

There are three forms of the create surface command:
Create Surface Curve <curve_id_1> <curve_id_2> <curve_id_3>...
Create Surface from Surface <surface_id>

Create Surface extended from Surface <surface_id>

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual67

CHAPTER 4 . Geometry

The first form of this command produces an analytic or spline surface fit to cover the bounding
curves.

The second form creates a surface using the same geometric description of the specified surface.
The new surface will be a stand-alone sheet body that is geometrically identical to the user
supplied surface.

The third form of the command creates a surface that is extended from a given surface. The
specified surface’s geometry is examined and extended out “infinitely” relative to the current
model in CUBIT (i.e. extended to just beyond the bounding box of the entire model). The given
surfaces are extended as shown in Table 4-1.

Table 4-1: Surface Extension Results

Given Surface Type Resulting Extended Surfacg
Spherical Shell of Full Sphere
Planar Plane of infinite size relative to model
Toroidal Shell of Full Taurus
Conical, cone, cylinder... Shell of outside conic axially aligned

with given conic of infinite height
relative to model

Spline Surface is extended to extents of the
spline definition. This may not be any
further than the surface itself, so cautign
should be used here.

Volume

Currently, CUBIT can create volumes from surfaces only by sweeping a single surface into a
3D solid. Sweeping of planar surfaces, belonging either to two- or three-dimensional bodies, is
allowed - non-planar faces are not supported at this time.

There are two forms of the sweep command; the syntax and details for each are given below. In
both forms, the optionalraft_angle parameter specifies the angle at which the lateral faces
of the swept solid will be inclined to the sweep direction. It can also be described as the angle
at which the profile expands or contracts as it is swept. The default value is 0.0. The optional
draft_type parameter is an ACIS-related parameter and specifies what should be done to the
corners of the swept solid when a non-zero draft angle is specified. A value of 0 is the default
value and implies an extended treatment of the corners. A value of 1 is also valid and implies a
rounded (blended) treatment of the corners.

sweep surface {<surface_id range> | all} vector <x vector y vector
z vector> [distance <distance value>] [draft_angle <degrees>]
[draft_type <0 | 1>]

68 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

Sweeps a surface a specified distance along a specified vector. Specifying the distance of the
sweep is optional; if this parameter is not provided, the face is swept a distance equal to the
length of the specified vector.

sweep surface {<surface_id_range> | all} axis {<xpoint ypoint zpoint xvector
yvector zvector> | xaxis | yaxis | zaxis} angle <degrees> [steps
<number_of sweep_steps>] [draft_angle <degrees>] [draft_type <0 | 1>]

Sweeps a surface about a specified vector or axis through a specified anglexig hef
revolution is specified using either a starting point and a vector, or by a coordinate axis. This axis

must lie in the plane of the surfaces being swept. Jieps parameter defaults to a value of 0
which creates a circular sweep path. If a positive, non-zero valuer(seyspecified, then the
sweep path consists of a serieqidihear segments, each subtending an angléssfeep_angle

) I (steps-1)|t the axis of revolution.

Note: Specifying multiple surfaces that belong to the same body will not work as expected,
as ACIS performs the sweep operatiinplace Hence, if a range of surfaces is

provided, they ought to each belong to different bodies.

The sweep operations have been designed to produce valid solids of positive volume, even
though the underlying solid modeling kernel library that actually executes the operation, ACIS,
allows the generation of solids of negative volume (i.e., voids) using a sweep.

v Geometry Transforms

Bodies can be modified in CUBIT using transform operations, which include align, copy, move,
reflect, restore, rotate, and scale. With the exception of the copy operation, transform operations
in CUBIT donot create new topology, rather they modify the geometry of the specified bodies.

Align

The align command is a combination of the rotate and move commands. The align command
will align the surface of a given body with any other surface in the model, such that the surface
centroids are coincident and the normals are pointing either in the same or opposite direction
(depending on their initial alignment.) The syntax of this command is:

Align Body <body_id> Surface <surface_id> with Surface <body_id>

This transformation is useful for aligning surfaces in preparation for geometry decomposition.

Copy

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual69

CHAPTER 4 . Geometry

The copy command copies an existing body to a new body without modifying the existing body.
A copy can be made of several bodies at once, and the resulting new bodies can be translated or
rotated at the same time. The commands for copying bodies are:

Body <range> copy [move <x-offset> <y-offset> <z-offset>]

Body <range> copy [reflect {x | y | z}]

Body <range> copy [reflect <x-comp> <y-comp> <z-comp>]

Body <range> copy [rotate <angle> about {x | y | z}]

Body <range> copy [rotate <angle> about <x-comp> <y-comp> <z-comp>]
Body <range> copy [scale <scale-factor>]

If the copy command is used to generate new bodies, a copy of the original mesh generated in
the original body can also be copied directly into the new body. This is currently limited to
copies that do not interact with adjacent geometry through non-manifold topology. For details
on mesh copies, see “Mesh Importing and Duplicating” on page 167.

Move

Themove command moves a body by a specified offset. The commands to move bodies are:
Body <id_range> [Copy] Move <dx> <dy> <dz>
Body <id_range> [Copy] Move {x|y|z} <distance>
Move {Body|Group} <id_range> Normal To Surface <id> Distance <val>
Move {Body|Group} <id_range> XYZ <x_val> <y _val> <z_val>
If the copy option is specified, a copy is made and the copy is moved by the specified offset.

It is also possible to move bodies to locations specified either absolutely or relative to other
geometry entities in the model:

Move {entity} <id_range> location entity <id> [except [X] [y] [z]]

Move {entity} <id_range> location [x <val>] [y <val>] [z <val>] [except [X] [Y]
[z]]
Here entity is {vertex|curve|surface|volume|body}, and any combination of entities may be
specified (in this case, the body containing the specified entity is moved). This command moves
the center of the entities to the specified location. (Note that bodies are integral, so moving an
entity also moves all other entities that are in the same body.) “Except” is used to preserve the
X, Y, or z plane in which the center of the entity lies.

Scale

The scale command resizes the body by a constant scale. The body will be scaled about its
centroid. The command to scale bodies is:

body <range> [copy] scale <scale>

If the copy option is specified, a copy is made and scaled the specified amount.

Rotate

70 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

Therotate command rotates a body about a given axis without adding any new geometry. If the
Angle or anyComponents are not specified they are defaulted to be zero. The commands to
rotate a body or bodies are:

body <range> [copy] rotate <angle> about {x | y | z}
body <range> [copy] rotate <angle> about <x-comp> <y-comp> <z-comp>

Rotate {Body|Group} <id_range> Angle <val> Axis {X|Y|Z|Normal of Surface
<id>| Vertex <id_1> Vertex <id_2>}

If the copy option is specified, a copy is made and rotated the specified amount.

Reflect

Thereflect command mirrors the body about a plane normal to the vector supplied. The reflect
command willdestroythe existing body and replace it with the new reflected body, unless the
copy option is used.

body <range> [copy] reflect <x-comp> <y-comp> <z-comp>

body <range> [copy] reflect {x | y | z}
Restore

The restore command removes all previous geometry transformations from the specified body.
The command to restore bodies is:

body <range> restore

v Geometry Booleans

Boolean operations are ones that modify the geometry and/or the topology of existing solids.
Boolean operators supported in CUBIT include imprint, intersect, separate, section, subtract,
and union. These operations usually replace the original bodies input to the boolean with new
ones.

Imprint

To produce a non-manifold geometry model from a manifold geometry, coincident surfaces
must be merged together (see “Geometry Merging” on page 80); this merge can only take place
if the surfaces to be merged have like topology and geometry. While various parts of an
assembly will typically have surfaces which coincide geometrically, an imprint is necessary to
make the surfaces have like topology.

The commands used to imprint bodies together are:
Imprint <body1_id> with <body2_id>
Imprint [Body] All

An Imprint All will imprint all bodies in the model pairwise; bounding boxes are used to filter
out imprint calls for bodies which clearly don't intersect.

Intersect

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual/ 1

CHAPTER 4 . Geometry

Theintersect command generates a new body composed of the space that is shared by the two
bodies being intersected. Both of the original bodies will be deleted and the new body will be
given the next highest body ID available. The command is:

Intersect <bodyl1_id> with <body2_id> [keep]
Thekeep option results in the original bodies used in the intersect being kept.
Section
This command will cut a body or group of bodies with a plane, keeping geometry on one side
of the plane and discarding the rest. The syntax for this command is:

Section {body|group} <id_range> {xplane|yplane|zplane} [offset <value>]
[reverse] [keep]

Section {body|group} <id_range> surface <id> [reverse] [keep]

In the first form, the specified coordinate plane is used to cut the specified bodies. The offset
option is used to specify an offset from the coordinate plane. In the second form, an existing
(planar) surface is used to section the model. In either case, the reverse keyword results in
discarding the positive side of the specified plane or surface instead of the other sideephe
option results in keeping both sides; the section command used with this option is equivalent to
webcutting with a plane.

Separate

The separate command is used to separate a body with multiple volumes into a multiple bodies
with single volumes. The command is:

Separate Body {id_range|all}
Subtract

The subtract operation subtracts one body from another set of bodies. The order of subtraction
is significant - the body or bodies specified before the From keyword is/are subtracted from
bodies specified after From. Both of the original bodies are deleted and the new body is given
the next highest body ID available, unlesskbéep keyword is given. The command is:

Subtract <body1_id> from [Body] <body_id_range> [keep]
Unite

The unite operation combines two or more bodies into a single body. The original bodies are
deleted and the new body is given the next highest body ID available, unldssaeption is
used. The commands are:

Unite <bodyl_id> with <body?2_id> [keep]
Unite Body {<range> | all} [keep]

The second form of the command unites multiple bodies in a single operation all thetion
is used, all bodies in the model are united into a single body. If the bodies that are united do not
overlap or touch, the two bodies are combined into a single body with multiple volumes.

72 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

v Geometry Decomposition

Geometry decomposition is often required to generate an all-hexahedral mesh for three-
dimensional solids, as fully automatic all-hex mesh generation of arbitrary solids is not yet
possible in CUBIT. While geometry booleans can be used for decomposition (and are the basis
of the underlying implementation of advanced decomposition tools described here), CUBIT has
a webcut capability specially tuned for decomposition.

Web Cutting

The term “web cutting” refers to the act of cutting an existing body or bodies, referred to as the
“blank”, into two or more pieces through the use of some form of cutting tool, or “tool”. The

two primary types of cutting tools available in CUBIT are surfaces (either pre-existing surfaces
in the model or infinite or semi-infinite surfaces defined for webcutting), or pre-existing bodies.

The various forms of the webcut command can be classified by the type of tool used for cutting.
These forms are described below, starting with the simplest type of tool and progressing to more
complex types.

Webcut Using Planar or Cylindrical Surface

The commands used to webcut with a planar surface in CUBIT are:
webcut {blank} plane {xplane | yplane | zplane} [offset <value>]
webcut {blank} plane surface <surface_id>
webcut {blank} plane vertex <id> vertex <id> vertex <id>

webcut {blank} cylinder radius <val.> axis {X|y|z|normal of surface <id>|
vertex <id_1> vertex <id_2>| <x_val> <y val> <z_val>>} [center <x_val>
<y_val> <z_val>]

[NOIMPRINT|imprint][NOMERGE|merge] [group_results]

In the command’s simplest form, a coordinate plane can be used to cut the model, and can
optionally be offset a positive or negative distance from its position at the origin.

An existing planar surface can also be used to cut the model; in this case, the surface is identified
by its ID as the cutting tool.

Finally, any arbitrary planar surface can be used by specifying three vertices which define the
plane.

A semi-infinite cylindrical surface can be used by specifying the cylinder radius, andthe cylinder
axis. The axis is specified as a line corresponding to a coordinate axis, the normal to a specified
surface, two arbitrary points, or an arbitrary point and the origin. The “center” point through
which the cylinder axis passes can also be specified.

Webcut with Arbitrary Surface

An arbitrary “sheet” surface can also be used to webcut a body. This sheet need not be planar,
and can be bounded or infinite. The following commands are used:

webcut {blank} with sheet {body|surface} <id> [webcut_options]

webcut {blank} with sheet extended from surface <id> [webcut_options]

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual73

CHAPTER 4 . Geometry

In its first form, the command uses a sheet body, either one that is pre-existing or one formed
from a specified surface. Note that in this latter case the (bounded) surface should completely
cut the body into two pieces. Sheet bodies can be formed from a single surface, but can also be
the combination of many surfaces; this form of webcut can be used with quite complicated
cutting surfaces.

Extended sheet surfaces can also be used; in this case, the specified surface will be extended in
all directions possible. Note that some spline surfaces are limited in extent, and so these surfaces
may or may not completely cut the blank.

Webcut Using Tool Body

Any existing body in the geometric model can be used to cut other bodies; the command to do
this is:

webcut {blank} tool [body] <id> [webcut_options]

This simply uses the specified tool body in a set of boolean operations to split the blank into two
or more pieces.

Webcut Options

The following options can be used with all webcut commands:

Group_results: The various pieces resulting from the previous command are placed into a
group named ‘webcut_group’.

[Imprint | Noimprint]: In its default implementation, webcutting results in the pieces not
being imprinted on one another; this option forces the code to imprint the pieces after
webcutting.

[Merge | Nomerge]: By default, the pieces resulting from an imprint are manifold; specifying
this option results in a merge check for all surfaces in the pieces resulting from the webcut.

General Notes

The primary purpose of web cutting is to make an existing model meshable with the hex
meshing algorithms available in CUBIT. While web cutting can also be used to build the initial
geometric model, the implementation and command interface to web cutting have been
designed to serve its primary purpose. Several important things to remember about webcutting
are as follows:

» The geometric model should be checked for integrity (using imprinting and merging) before
starting the decomposition process. This makes the checking process easier, since there are
fewer bodies and surfaces to check. Once the model passes that initial integrity check, itis
rare that decompositions using webcut will result in a model that does not also pass the same
checks.

» The use of the Imprint option can in cases save execution time, since it limits the scope of the
imprint operations and thereby works faster. The alternative is performing and Imprint All on
the pieces of the model after all decompositions have been completed; this operation has been
made much faster in more current releases of CUBIT, but will still take a noticeable amount
of time for complicated models.

» While the Webcut commands make it very simple to cut your model into very many pieces,
we recommend that the user restrict the decomposition they perform to only that necessary for
meshability or for obtaining an acceptable mesh. Having more volumes in the model may

74 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

simplify individual volumes, but may not always result in a higher quality mesh; it will
always increase the run time and complexity of the meshing task.

Appendix B contains some examples that demonstrate the use of webcutting operations.

Split Periodic

Solids which contain periodic surfaces include cylinders, torii and spheres. Splitting periodic
surfaces can in some cases simplify meshing, and will result in curves and surfaces being added
to the volume. The command used to split periodic surfaces is:

Split Periodic Body {id_range]all}

This command splits all periodic surfaces in a body or bodies.

v Virtual Geometry:

Modify topology of the model within Cubit without affecting geometry and without making
changes to the actual solid model. All Virtual Geometry (VG) operations are reversible (original
solid model topology can be restored.)

General Notes:

Operations on the solid model cannot be done for bodies containing virtual geometry. Solid
modeling operations (webcutting, imprinting, booleans, etc.) must be done prior to creating
virtual geometry.

Virtual geometry operations cannot be done on meshed geometry.
Compositing:

Combine a set of connected curves into a single composite curve, or a set of connected surfaces
into a single surface. The general purpose is to suppress (remove) the child geometry common
to those entities being composited. For example, compositing a set of curves suppresses the
vertices common to those curves, thus removing the constraint that a node must be placed at that
vertex location.

The basic form of the command to create composites is:
composite create {surface|curve} <id_list>

This command will composite as many surfaces (or curves) as possible, possibly creating
multiple composites. The command to remove a composite is:

composite delete {surface|curve} <id>

Compositing over large C1 discontinuities may confuse meshing algorithms and/or result in a
bad mesh.

Composite Curves:
The full command for the creation of composite curves is:
Composite Create Curve <id_range> [keep vertex <id_list>] [angle <degrees>]

The additional arguments provide two methods to prevent vertices from being removed from the
model (composited over.) The first method, "keep vertex" explicitly specifies vertices which are
not to be removed. This option can also be used to control which vertex is kept when
compositing a set of curves results in a closed curve. The ’angle’ option specifies vertices to

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual/5

CHAPTER 4 . Geometry

76

keep by the angle between the tangents of the curves at that vertex. A value less than zero will
result in no composite curves being created. A value of 180 or greater will result in all possible
composites being created. The default behavior is an empty list of vertices to keep, and an angle
of 180 degrees.

Composite Surfaces:
The general command for composite surface creation is:

Composite Create Surface <id_range> [angle <degrees>] [nocurves] [keep [angle
<degrees>] [vertex <id_list>]]

The first angle argument (the only one if the 'keep’ keyword is not present, or the one preceding
the 'keep’ keyword) prevents curves from being removed from the model (composited over) by
specifying the maximum angle between the normals of surfaces adjacent to the curve.

When a composite surface is created, the default behavior is to also composite curves on the
boundary of the new composite surface. Curves are automatically composited if the angle
between tangents at the common vertex is less than 15 degrees. The 'nocurves’ option can be
used to prevent any composite curves from being created. The 'keep’ keyword can be used to
change the default choice of which curves to composite. The arguments following the 'keep’
keyword behave the same as for explicit composite curve creation. The 'nocurves’ and 'keep’
arguments are mutually exclusive.

Other Composite Surface Notes:

It typically takes longer to mesh a single composite surface than to mesh the surfaces used in
the creation of the composite.

Composite surfaces uses an approximation method to evaluate the closes point to a trimmed
surfaces because it is faster. However, for some highly convoluted surfaces (used to create the
composite), this method may return bad results. The command

composite closest_pt surface <id> {gme|emulate}

can be used to disable this behavior. The default is to use the 'emulate’ method, as it is typically
much faster. Specifying the 'gme’ option will force the specified composite surface to use the
exact calculation of the closest point to a trimmed surface, as provided by the solid modeler.
However, this is considerably slower in most cases.

The "composite create surface” command is non-deterministic in some circumstances. When
three or more adjacent surfaces are to be composited, all the surfaces cannot be composited into
a single surface, but different subsets of the surfaces may be composited, the command will
choose arbitrary subsets to composite. As an example, there are three surfaces A, B, and C, all
adjacent to each other. The common curve between A and B is AB, the common curve between
B and C is BC, and the common curve between A and C is AC. If the curve BC cannot be
removed, either due to the angle specified in the composite command, or because there is a
fourth surface, D, also using that curve, the command will arbitrarily choose to either composite
Aand B or Aand C.

Partitioning:

Partitioning provides a method to introduce additional topology into the model, to better
constrain meshing algorithms. This is accomplished by splitting, or partitioning, existing curves
or surfaces.

Partitioning Curves:

There are three forms to the command to partition a curve:

CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

partition create curve <id> fraction <f1> [<f2> <f3> ...]
partition create curve <id> position <x> <y> <z> [position <x2> <y2> <z2> ...]
partition create curve <id> vertex <id_list>

The first two forms of the command create additional vertices and use those vertices to split a
curve. The third form of the command uses existing vertices to split the curve.

Using the "fraction’ option, vertices are created at the specified fractions along the curve (in the
range [0,1]). Subsequently, the curve is split at each vertex, resulting in n+1 new curves, where
n is the number of fraction values specified.

Using the 'position’ option, vertices are created at the closest location along the curve to each
of the specified position. Subsequently, the curve is split at each vertex, resulting in n+1 new
curves, where n is the number of positions specified.

Curves can also be partitioned via the 'virtual’ command discussed below.
Partitioning Surfaces:
There are two forms of the command to partition a surface:

partition create surface <id> curve <id_list>

partition create surface <id> vertex <id1> <id2> [<id3>]

The first form of the command splits the existing surface into several surfaces using the passed
list of curves. The end vertices of the curves must be part of the surface. If the vertices are not
already part of the surface, they can be made to be part of the surface by partitioning curves in
the surface using end vertices of the passed list of curves. Any curves which do not complete
loops on the surface are disregarded.

The second form of the command creates a curve (or two curves) and splits the surface using
those curves. At most three vertices may be specified. At least two of those vertices must be part
of the surface. The third, if specified, must lie on the surface.

Removing partitions:

There are two commands used to remove partitions:
partition merge {curve|surface} <id_list>
partition delete {curve|surface} <id>

The first command combines existing partitions where possible. This command is similar to the
‘composite create’ command. The difference is that this command is special-cased for
partitions, and will result in more efficient geometric evaluations. If all the partitions of a real
solid model entity are merged (such that there is only one ’partition’ remaining) the virtual
geometry will be removed, and the original solid model geometry will be restored to the model.

The second form of the command takes a single partitioned surface or curve, finds all other
partitions of the same real geometry, and does the equivalent of the 'partition merge’ command
for that set of partitions.

Creating New Virtual Geometry (The 'virtual’ Command.)

The 'virtual’ command provides a method for introducing new geometry for use in defining
locations at which to partition. Geometry created with this command exists only in Cubit, not
in the actual solid model. Geometry created by the solid modeling engine may also be used to
define partition locations.

Virtual Vertices:

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual/ 7

CHAPTER 4 . Geometry

Virtual vertices are typically used to define locations at which to partition a curve, and in
defining the end points of virtual curves. There are five forms of the command to create a virtual
vertex:

virtual create vertex position <x> <y> <z> [position <x1> <yl1> <z1>..\]
virtual create vertex curve <id> fraction <f> [<f2> <f3> <f4> ...] [nocurves]

virtual create vertex curve <id> position <x> <y> <z> [position <x1> <yl1> <z1> ...]
[nocurves]

virtual create vertex curve <id> vertex <id_list> [nocurves]
virtual create vertex surface <id> position <x> <y> <z> [position <x1> <y1> <z1> ..]

The first, and simplest form of the command creates vertices at the specified positions. The
second, third, and fourth forms of the command create vertices on a curve. They also
automatically partition the curve at those vertex locations, as this is generally why the vertices
are being created. The 'nocurves’ option prevents the automatic curve partitioning. The second
and third forms of the command behave the same as the similar curve partitioning commands
(unless the 'nocurves’ option is present.) The fourth form of the command creates vertices on
the specified curve at the closest location on that curve to the specified vertices. The fifth, and
final form of the command creates vertices at the closest point(s) to the specified surface from
the passed position(s).

Virtual Curves:

Virtual curves are typically used to define locations at which to partition surfaces. There are two
forms of the command to create virtual curves:

virtual create curve vertex <id1> <id2>
virtual create curve vertex <id1> <id2> surface <id>

The first form of the command creates a linear curve between the two specified vertices. The
second form of the command creates a curve between two vertices, and lying on the specified
surface.

Deleting Virtual Vertices and Curves:

Virtual vertices and curves may be deleted using the general Cubit 'delete’ command, and are
subject to the same restrictions as other geometry. They may not be deleted if they have parent
geometry.

Using The 'delete’ Command With Composites.

If the general 'delete’ command is invoked for a composite surface, the composite surface will
be removed, and the original surfaces used to define the composite will be restored to the model.
The defining surfaces are NOT also deleted. As with any other surface, the delete command will
fail if the composite has a parent volume. This is why the 'composite delete’ command is
provided. The behavior is analogous for composite curves.

If the delete command is used on a volume containing a composite surface or curve, or on a
surface containing a composite curve, the entire volume or surface will be deleted, including the
original entities used to define the composite, as those entities are also children of the entity
being deleted.

Using the 'delete’ Command With Partitions.

It is recommended that the 'delete’ command not be used with partitions, as it may break
subsequent usage of the 'merge’ and 'delete’ forms of the ’partition” command for other

78 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 . Geometry

partitions of the same real geometry entity. However, if the 'delete’ command is used for
partitions, the behavior is to delete the specified partition, and when the last partition of the real
geometry is deleted, to restore the original geometry.

It works fine to use the delete command on parents of partitions, for example a volume
containing partitioned surfaces, or a surface containing partitioned curves. In this case, the Cubit
will behave exactly as expected. The specified entity will be deleted along with all of its
children, including the partition entities, and the original entities that were partitioned.

v Automatic Geometry Decomposition

In many cases, model geometry includes protrusions which, when cut off using geometry
decomposition, are easily meshable with existing algorithms. CUBIT includes a feature-based
decomposition capability which automates this process. This algorithm operates by finding
concave curves in the model, grouping them into closed loops, then forming cutting surfaces
based on those loops. Although this algorithm is still in the research stage, it can be useful for
automating some of the decomposition required for typical models. To automatically
decompose a model, use the command

Cut Body <body_id_range> [Trace {on|off}] [Depth <cut_depth>]

If the Trace option is used, the algorithm prints progress information as decomposition
progresses. The Depth option controls how many cuts are made before the algorithm returns;
by default, the algorithm cuts the model wherever it can.

Automatic decomposition is used to decompose the model shown in Figure 4-2 left,, with the
meshed results shown in Figure 4-2 right. In this case, automatic decomposition performs all
but one of the required cuts.

Figure 4-2: Automatic decomposition, plus one manual webcut, makes the model sweepable.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual79

CHAPTER 4 . Geometry

v Geometry Merging

As stated in “Non-Manifold Topology” on page 60, geometry is created and imported in CUBIT
in a manifold state, by default. The process of converting manifold to non-manifold geometry
is referred to as “geometry merging”, since it involves merging multiple geometric entities into
single ones.

The merging of two manifold surfaces into one non-manifold surface is depicted in Figure 4-3.

Figure 4-3: Merging two manifold surfaces into a single non-manifold surface.

It is clear that merging geometry results in some surfaces, curves and vertices being removed
from the model. By default, entities with the lowest ID are retained.

Merging
There are several steps to the geometry merging algorithm in CUBIT; they are:
e Check lower order geometry, merge if possible
» Checktopology of current entities

» Check geometry of current entities
« If both topology and geometry are alike, merge entities

Thus, in order for two entities to merge, the entities must correspond geometrically and
topologically. The geometric correspondence usually comes from constructing the model that
way. The topological correspondence can come from that process as well, but also can be
accomplished in CUBIT using Imprinting (see “Imprint” on page 71.)

There are several options for merging geometry in CUBIT.
e Merge geometry automatically

Merge all [Vertex | Curve | Surface]
Merge Body <id_range>

All topological entities in the model or in the specified bodies are examined for geometric and
topological correspondence, and are merged if they pass the test.

If a specific entity type is specified with the Merge all, only complete entities of that type are
merged. For example, if Merge all surface is entered, only vertices which are part of
corresponding surfaces being merged; vertices which correspond but which are not part of
corresponding surfaces will not be merged. This command can be used to speed up the
merging process for large models, but should be used with caution as it can hide problems
with the geometry (see)

e Test for merging in a specified group of geometry
Merge [Vertex | Curve | Surface] <id_range>

All topological entities in the specfiied entity list, as well as lower order topology belonging
to those entities, are examined for merging. This command can be used to prevent merging of
entities which correspond and would otherwise be merged, e.g. slide surfaces.

80 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

 Force merge specified geometry entities

Merge [Vertex | Curve | Surface] <id_range> Force

This command results in the specified entities being merged, whether they pass the geometric
correspondence test or not. This command should only be used with caution and when
merging otherwise fails; instances where this is required should be reported to the CUBIT

development team.

Examining Merged Entities

There are several mechanisms for examining which enties have been merged. The most useful
mechanism is assigning all merged or unmerged entities of a specified type to a group, and
examining that group graphically. This process can be used to examine the outer shell of an
assembly of volumes, for example to verify if all interior surfaces have been merged. To put all
the merged or unmerged entities of a given type into a specified group, use the command:

Group {<'name’>|<id>} [Surface | Curve | Vertex] [Merged | Unmerged]
If the entity type is unspecified, surfaces will be assumed.

Entities can also be labelled in the graphics according to whether or not they have been merged.
To turn merge labeling on for a specified entity type, use the command

Label {Vertex | Curve | Surface} Merge

Merge Tolerance

Geometric correspondence between entities is judged according to a specfied absolute
numerical tolerance. The particular kind of spatial check depends on the type of entity. Vertices
are compared by comparing their spatial position; curves are tested geometrically by testing
points 1/3 and 2/3 down the curve in terms of parameter value; surfaces are tested at several pre-
determined points on the surface. In all cases, spatial checks are done comparing a given
position on one entity with the closest point on the other entity. This allows merging of entities
which correspond spatially but which have different parameterizations.

The default absolute merge tolerance used in CUBIT is 5.0e-4. This means that points which
are at least this close will pass the geometric correspondence test used for merging. The user
may change this value using the following command:

Merge Tolerance <val>

If the user does not enter a value, the current merge tolerance value will be printed to the screen.
There is no upper bound to the merge tolerance, although in experience there are few cases
where the merge tolerance has needed to be adjusted upward. The lower bound on the tolerance,
which is tied to the accuracy of the solid modeling engine in CUBIT, is 1le-6.

Using Geometry Merging to Verify Geometry

Geometry merging is often used to verify the correctness of an assembly of volumes. For
example, groups of unmerged surfaces can be used to verify the outer shell of the assembly (see
“Examining Merged Entities” on page 81.) There is other information that comes from the
Merge all command that is useful for verifying geometry. In typical geometric models, vertices
and curves which get merged will usually be part of surfaces containing them which get merged.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual81

CHAPTER 4 . Geometry

So, if a Merge all command is used and the command reports that vertices and curves have been
merged, this is usually an indication of a problem with geometry. In particular, it is often a sign
that there are overlapping bodies in the model. The second most common problem indicated by
merging curves and vertices is that the merge tolerance is set too high for a given model. In any
event, merged vertices and curves should be examined closely.

v Geometry Groups

Groups provide a powerful capability for performing operations on multiple geometric entities
with minimal input. They can also serve as a means for sorting geometric entities according to
various criteria.

The command syntax to create or modify a group is:
group {id | “name”} add <list of topology entities>
For example, the command,
group “Exterior” add surface 1 to 2, curve 3to 5

will create the group namelixterior consisting of the listed topological entities. Any of the
commands that can be applied to the “regular” topological entities can also be applied to groups.
For examplemesh Exterior , list Exterior , or draw Exterior . A topological entity can be
removed from a group using the command:

group <id> remove <entity list>
When a group is meshed, CUBIT will automatically perform an interval matching on all
surfaces in the group (including surfaces that are a part of volumes or bodies in the group).

There are several utilities in CUBIT which use groups as a means of visualizing output. These
utilities are described elsewhere, but listed here for reference:

» Webcut results (see “Web Cutting” on page 73)

» Merged and unmerged entities (see “Examining Merged Entities” on page 81)
» Sweep groups (see “Web Cutting” on page 73)

* Interval matching (see “Web Cutting” on page 73)

v Geometry Attributes

Each topological entity has attributes attached to it. These attributes specify aspects of the entity
such as the color that entity is drawn in and the meshing scheme to be used when meshing that
entity. This section describes those geometry attributes that are not described elsewhere in this
manual.

Entity Names

Topological entities (including groups) are assigned integer identification numbers in CUBIT in
ascending order, starting with 1. Each new entity created within CUBIT receives a unique id.
However, topological entities can also be assigned names, and these names can be propagated
explicitly by the user. A topological entity may have multiple names, but a particular name may

82 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

only refer to a single entity. The following command assigns names to topological entities in
CUBIT:

{Group|Body|Volume|Surface|Curve|Vertex} Name ‘<entity _name>’

The name of each topological entity appears in the output oLigtecommand. In addition,
topological entities can be labeled with their names (see label command). A list of all names
currently assigned and their corresponding entity type and id (optionally filtered by entity type)
can be obtained with the command

list names [{group|body|volume|surface|curve|vertex|all}]

Note: In a merge operation, the names of the deleted entity will be appended to the names of
the surviving entity.

Topological entities can be identified either by the entity type followed by an identification
number or by a unique name. Such a name can be used anywhere that an entity type and id may
be used. For example, if surface 3 is named CHAMFER1, the command “mesh CHAMFER1"
has the same result as the command “mesh surface 3”.

Each topological entity can optionally be given a unique default name when it is first created.
The default name consists of the type of topological entity (body, volume, surface, curve, or
vertex), followed by the ID number of the entity. For example, curve number 21 would have a
default name, “curve21”. Default names can be useful to reduce the amount of time spent
redoing id’s between CUBIT and ACIS versions. The command for setting the default namesiis:

set default names {on|off}

Persistent Attributes

Typical data assigned to topological entities during a meshing session might include intervals,
mesh schemes, group assignments, etc. By default, most of this data is lost between CUBIT
sessions, and must be restored using the original CUBIT commands. Using CUBIT’s persistent
attributes capability, some of this data can be saved with the solid model and restored
automatically when the model is imported into CUBIT.

Attribute Behavior

In this context, attributes are defined as data associated directly with a particular geometry
entity. In CUBIT’s implementation of attributes, these data can occupy one of three “states” at
any given time: they can exist only on the ACIS obijects; they can exist in CUBIT's attribute
objects; or they can be written to the appropriate data fields on CUBIT’s geometry entities.
Movement of data between these states is defined by the following behaviors:

» Read:read data from ACIS objects into CUBIT attribute objects

 Actuate:assign data from CUBIT attribute objects to CUBIT geometry entities

» Update assign data from CUBIT geometry entities to CUBIT attributes (opposite of Actuate)

» Write :write data from CUBIT attribute objects to ACIS objects (opposite of Read)

By default, the Actuate and Update functions are not performed automatically, and must be
requested by the user, either for specific geometric entities or for all entities for a given attribute

type. The Read and Write functions are performed automatically, and are not normally
controlled by the user.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual83

CHAPTER 4 . Geometry

Attribute Types

The attribute types currently implemented in CUBIT are shown in Table 4-2. There are also

Table 4-2: Attribute types currently implemented in CUBIT. All attributes are set to
automatically read and write from and to ACIS model.

Attribute Descriotion Default | Default
Type P Actuate| Update
Composite VG| Information required to restore composite virtual geometry entities. Mahual Manual
Genesis Entity| Genesis entities (blocks, nodesets, sidesets) to which an entity helongs. Manual Manual
Group Groups to which the entity belongs. Manual Manugl
Id Id assigned to the entity in the current session. Manual Manual
Interval Interval number, size and firmness. Manual Manual
Merge Information on which other entities are merged with this one. Manual Manual
Mesh Mesh owned by an entity. Manual Manua
Container
Mesh Scheme| Mesh scheme and any data specific to the mesh scheme assignet/lanaal Manual
entity.

Name Entity name assigned by user or by default. Auto Auto
Partition VG Information required to restore partition virtual geometry entities. Manual Manual
Relative Relative length factor. Manual Manual
Length
Smooth Smooth scheme and any data specific to the smooth scheme assigh&diaoual Manual
Scheme an entity.
Vertex Type Vertex type(s) assigned to a vertex. Manual Manual

84

plans for implementing attributes based on block, nodeset, sideset, mesh scheme, and several

other data.
Attribute Commands

The following commands are used to control attribute behavior

in CUBIT.

{geom_list} Attribute {all | attribute_type} {actuate | remove | update | read |

write}

Calls the function (actuate, update, etc.) for the designated attribute for the designated entity.

Set Attribute <attribute_type> Auto {actuate | update} {on |
Turn on or off the automatic actuation or updating for the given
List {Body | Volume | Surface | Curve | Vertex} <id_range>

List the attributes currently residing on the given entity.

CUBIT Version 4.0 Reference Manual

off}
attribute.
Attributes

Document Version 4/18/00

CHAPTER 4 " Geometry

Using CUBIT Attributes

A typical scenario for using CUBIT attributes would be as follows.

1. Construct geometry, merge, assign intervals, groups, etc. (i.e. normal CUBIT session)
2. Set the attribute option on usiBgt Attribute on.

3. Export acis file (see export acis command).

Subsequent runs:

1. Set Attribute on.

2. Import acis file (see import acis command); all attributes stored on model get actuated, either
writing the data to the geometric entities (e.g. interval, name) or performing some action (e.g.
merge, group).

Used in this manner, geometry attributes allow the user to store some data directly with the
geometry, and have that data be assigned to the corresponding CUBIT objects without entering
any additional commands.

v Exporting Geometry

Geometry can also be exported from within CUBIT to the ACIS SAT format. The SAT format
can be used to exchange geometry between ACIS-compliant applications. The user can,
optionally, specify which subset of bodies are to be exported. The command used to export
geometry is:

Export Acis ‘<acis_sat_filename>’ [Body <body_id_range>]

Note that the filename is enclosed in single or double quotes. IBtdy keyword is not
specified, then all the bodies in the model are saved. Note that the model is saved as manifold
geometry, and will have that representation when imported back into CUBIT (see“Non-
Manifold Topology” on page 60 and “Geometry Merging” on page 80.)

v New Geometry Commands

Tweaking Geometry

The tweaking commands modify models by moving, offsetting or replacing surfaces, while extending the adjoining
surfaces to fill the resulting gaps. This is useful for eliminating gaps between components, simplifying geometry or
changing the dimensions of an object.

Tweak Surface <id_range> Offset <value> [keep]
Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>
Location {Vertex|Curve|Surface|Volume|Body} <id>

[Except [X][Y][Z]] [keep]

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>
Location <x_val> <y _val> <z_val> [Except [X][Y][Z]] [keep]

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual85

CHAPTER 4 . Geometry

Tweak Surface <id_range> Move <dx_val> <dy_val> <dz_val> [keep]

Tweak Surface <id_range> Move Normal To Surface <id> Distance <val>
[Except [X][Y][Z]] [keep]

Tweak Surface <id_range> Replace [With] Surface <id> [keep] [reverse]

The first form offsets an existing set of surfaces and extends the attached surfaces to meet them. A positive offset
value will offset the surface in the positive surface normal direction while a negative value will go the other way. Fig-
ure 1 shows a simple example of offsetting. Note that you can also offset whole groups of surfaces at once.

86 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

The next three forms of the command simply move the given surfaces along a vector direction. The direction
can be specified either absolutely or relative to other geometry entities in the model (from entity centroid to location).
Note that when moving a surface for tweak, the surface is moved and it and the adjoining surfaces are extended or
trimmed to match up again. So, for example, moving a vertically oriented planar surface in the vertical direction will
have no affect. In this example, if you move the surface 10 in the x and 5 in the y the effect will be to move it simply
10 in the x. You can also use these 3 forms of the command to move a protrusion around — just be sure to specify all
of the surfaces on the protrusion for moving

The last form of the command actually replaces the given surface with a copy of the new surface, then extends and
trims surfaces to match up. This can be useful for closing gaps between components or performing more complicated
modifications to models. Figure 2 shows a simple example.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual87

CHAPTER 4 . Geometry

Removing Surfaces

The remove surface command removes surfaces from bodies. By default, it attempts to extend the adjoining surfaces
to fill the resultant gap. This is a useful way to remove fillets and rounds and other features such as bosses not needed
for analysis. See Figure 3 for an example.

Remove Surface <id_range> [EXTEND|noextend] [keepsurface] [keep]

"I —

RL__ /J __ rf

Thenoextendqjualifier prevents the adjoining surfaces from being extended, leaving a gap in the body. This is some-
times useful for repairing bad geometry — the surface can be rebuilt with surface from curves or a net surface, etc..,
then combined back onto the body.

<= &5) < 7

Creating Vertices
The following commands have been added for creating vertices

Create Vertex On Curve <curve_id>
{Fraction <f> | Distance <d> | Position <xval><yval><zval>
| Close_To Vertex <vertex_id>}
[From Vertex <vertex_id> (optional for 'Fraction’ & 'Distance’)]
[Color <color_name>]

Create Vertex AtArc Curve <id_list> [Color <color_name>]
Create Vertex Atintersection Curve <id1> <id2> [bounded] [near] [Color <color_name>]

The first form is a general purpose command for creating a vertex on a curve. It allows the vertex to be created at a
fractional distance along the curve, at an actual distance from one of the curves ends, or at the closest location to an
Xyz position or another vertex. You can preview the location first with the commaag Location On Curve

(where the rest of the command is identical to the Create Vertex form).

88 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 . Geometry

The second form simply creates vertices at arc or circle centers. The last form creates vertices at the intersection of
two curves. If thddoundedqualifier is used, the vertices are limited to lie on the curves, otherwise the extensions of
the curves are also used to calculate the intersectionsnddweption is only valid for straight lines, where the clos-

est point on each curve is created if they do not actually intersect (resulting in two new vertices).

Creating Curves

The following command creates an arc either through 3 vertices or tangent to 3 curvesll Gjhalifier will cause
a complete circle to be created

Create Curve Arc Three {Vertex|Curve} <id_list> [Full]

The following command creates an arc using the center of the arc and 2 points on the arc. The arc will always have a
radius at a distance from the center to the first point, unleg&atitiasvalue is given. Again, théull qualifier will
cause a complete circle to be created.

Requires 3 Vertices - first is center, other two are on the arc
Create Curve Arc CenterEdge Vertex <id_list> [Radius <value>] [Full]

The following command will create a curve from a vertex onto a specified position along a curve. If none of the
optional parameters are given, the location on the curve is calculated as using the shortest distance from the start ver-
tex to the curve (i.e., the new curve will be normal to the existing curve).

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual89

CHAPTER 4 . Geometry

Default = Normal to the Curve

Create Curve From Vertex <vertex_id> Onto Curve <curve_id>
[Fraction <f> | Distance <d> | Position <xval><yval><zval> |
Close_To Vertex <vertex_id>
[[From] Vertex <vertex_id> (optional for 'Fraction' & 'Distance")]]
[On Surface <surface_id>]

The following command creates curves offset at a specified distance from a planar chain of curves. The direction
vector is only needed if a single straight curve is given. The offset curves are trimmed or extended so that no overlaps
or gaps exist between them. If the curves need to be extended the extension typ&ocandedike arcs,Extended
tangentially (the default -straight lines are extended as straight lines and arcs are extended as arcs), oatxtended
rally.

Direction is optional for offsets of individual straight curves only
Create Curve Offset Curve <id_list> Distance <val> [Direction <x> <y> <z>]
[Rounded|EXTENDED|Natural]

Trimming/Extending Curves
Curves can baimmed or extendedith the following command:
Trim Curve <id> Atintersection {Curve|Vertex <id>} Keepside Vertex <id> [near]

The curve can be trimmed or extended where it intersects with another curve or at a vertex location. When trimming
to another curve, the curves must physically intersect unless they both are straight lines in which weasoibtton

is available. With the near option the closest intersection point is used to the other line — so it is possible to trim to a
curve that lies in a different plane. When trimming to a vertex, if the vertex does not lie on the curve, it is projected to
the closest location on the curve or an extension of the curve if possible.

TheKeepsidevertex is needed to determine which side of the curve to keep and which side to throw away. This ver-
tex need not be one of the curve’s vertices, nor need it lie on the curve. However, if it is not on the curve it will be
projected to the curve and that location will determine which side of the curve to keep.

If the curve is part of a body or surface, it is simply copied first before trimming/extending. Ifitis a free curve a new
curve is created and the old curve is removed. Figure 4 shows several examples of trimming/extending curves.

90 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

Creating Surfaces

The following commands creafganar surfaces. The first passes a plane through 3 vertices, the second uses an exist-
ing plane, the third creates a plane normal to one of the global axes, and the fourth creates a plane normal to the tan-
gent of a curve at a location along the curve. By default, the commands create the surface just large enough to
intersect the bounding box of the entire model with minimum surface area. Optionally, you can give a list of bodies

to intersect for this calculation. You can also extend the size of the surface by either a percentage distance or an abso-
lute distance of the minimum area size. The plane can be previewed with the cobnaariRlane [with]...

(where the rest of the command is the same as that to create the surface).

Create Planar Surface [with] Plane Vertex <v1_id> [vertex] <v2_id> [vertex] <v3_id>
[intersecting] Body <id_range>] [extended percentage|absolute <val>]

Create Planar Surface [with] Plane Surface <surface_id>
[intersecting] Body <id_range>] [extended percentage|absolute <val>]

Create Planar Surface [with] Plane {xplane|yplane|zplane} [offset <val>]
[intersecting] Body <id_range>] [extended percentage|absolute <val>]

Create Planar Surface [with] Plane Normal To Curve <curve_id>
{fraction <f> | distance <d> | position <xval><yval><zval>
| close_to vertex <vertex_id>}
[[from] Vertex <vertex_id> (optional for ‘fraction’ & 'distance’)]
[intersecting] Body <id_range>] [extended percentage|absolute <val>]

Net surfacesxan be created with two different commands. A net surface passes through a set of curves in the u-direc-
tion and a set of curves in the v-direction (these u and v curves would looked like a mapped mesh). The first form of
the command uses curves to create the net surface. The curves must pass within tolerance of each other to work. The
second form uses a mapped mesh to create the surface. The mapped mesh can be of a single surface or a collection of
mapped or submapped surfaces that form a logical rectangle. By default net surfaces are healed to take advantage of
any possible internal simplification.

Create Surface Net U Curve <id_list> V Curve <id_list> [Tolerance <value>]
[HEAL|noheal]

Create Surface Net [From] [Mapped] Surface <id_list> [Tolerance <value>]
[HEAL|noheal]

A suggested geometry cleanup method is to use a virtual composite surface to map mesh a set of complicated sur-
faces then create a net surface from this mesh. Then the original surfaces can be removedosittetitbption
and the new net surface combined back onto the body.

The following command creates surfac#fsetfrom existing surfaces at the specified distance. The surfaces are not
guaranteed to be extended or trimmed to share boundaries; however they are generally close.

Create Surface Offset [From] Surface <id_list> Distance <val>

The following command createskin surface from a list of curves. An example of a skin surface is to create a sur-
face through a set of parallel lines.

Create Surface _Skin Curve <id_list>
Creating Bodies

The following command creates a body offset from another body at the specified distance. The new surfaces are
extended or trimmed appropriately. A positive distance results in a larger body; a negative distance in a smaller body.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual91

CHAPTER 4 . Geometry

Create Body Offset [from] Body <id_range> Distance <value>

This command allows the user to sweep a planar surface along a curve:

Sweep Surface <surface_id _range> Along Curve <curve_id> [draft_angle <degrees>]
[draft_type <0 | 1| 2>]

One of the ends of the curve must fall in the plane of the surface and the curve cannot be tangential to the surface.
Sweep along curve also supports an additional draft type "2" which implies a "natural” extension of the corners from
their curves.

Webcutting

Two new webcutting commands have been added.

Webcut {body|group} {<body_id_range>|all} [with] Plane Normal To Curve <curve_id>
{fraction <f> | distance <d> | position <xval><yval><zval> |
close_to vertex <vertex_id>}
[[From] Vertex <vertex_id> (optional for 'fraction' & 'distance")]
[NOIMPRINT|imprint[NOMERGE|merge][group_results]

Webcut {Body|Group} <id_range> [With] Loop [Curve] <id_range>
NOIMPRINT|Imprint] [NOMERGE|Merge] [group_results]
The first command allows a user to specify an infinite cutting plane by specifying a location on a curve. The cutting
plane is created such that it is normal to the curve tangent at the specified location.

The position on the curve can be specified as:

1) A fraction along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
2) A distance along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
3) An xyz position that is moved to the closest point on the given curve.

4) The position of a vertex that is moved to the closest point on the given curve.

The point on the curve can be previewed withDin@w Location On Curve command.

The second form cuts the body list with a temporary sheet body formed from the curve loop. This is the same sheet
as would be created from the comma&reate Surface Curve <id_list>

92 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

Imprinting
The following commands can be used for imprinting. A body can be imprinted with curves or vertices and surfaces
can be imprinted with curves. It is useful to imprint bodies or surfaces with curves to eliminate mesh skew, generate

more favorable surfaces for meshing, or create hardlines for paving. Imprinting with a vertex can be useful to split
curves for better control of the mesh or create hardpoints for paving.

Imprint Body <body id range> [with] Curve <curve_id_range> [keep]
Imprint Body <body _id_range> [with] Vertex <vertex_id_range> [keep]

Imprint Surface <surface_id_range> [with] Curve <curve_id_range> [keep]

Validating Geometry

More rigorous checking can be accomplished with the validate geometry commands by specifying a higher check
level. Use the following command to accomplish this:

set AcisOption Integer ‘check_level’ <integer>, where integer is one of the following:

10 = Fast error checks

20 = Level 10 checks plus slower error checks (default)

30 = Level 20 checks plus D-Cubed curve and surface checks

40 = Level 30 checks plus fast warning checks

50 = Level 40 checks plus slower warning checks

60 = Level 50 checks plus slow edge convexity change point checks
70 = Level 60 checks plus face/face intersection checks

You can also get more detailed output from the validate command with (the deddfit is
set AcisOption Integer ‘check_output’ on

Note that some of the ids listed in the output of the validate command are currently meaningless. This will be cor-
rected in a future release of CUBIT.

Geometry Accuracy
You can control the accuracy setting of the ACIS solid model geometry with the following command:
[set] Geometry Accuracy <value = le-6>

Some operations, like imprinting, can be more successful with a lower accuracy setting (i.e., 0.1 to 1e-5). However, it
is not recommended to change this valBe sure to set it back to 1e-6 before exporting the model or
doing other operations as a higher setting can corrupt your geometry

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual93

CHAPTER 4 . Geometry

Healing

Healing is an optional module that detects and fixes models in ACIS (CUBIT's core solid modeling kernel).

Itis possible to create ACIS models that are not accurate enough for ACIS to process. This most often happens when
geometry is created in some other modeling system and translated into an ACIS model. Such models may be impre-
cise due to the inherent humerical limitations of their parent systems, or due to limitations of data transfer through
neutral file formats. This imprecision can also result when an ACIS model is created at a different tolerance from the
current tolerance settings.

This imprecision leads to problems such as geometric errors in entities, gaps between entities, and the absence of con-
nectivity information (topology). Since ACIS is a high precision modeler, it expects all entities to satisfy stringent

data integrity checks for the proper functioning of its algorithms. Therefore, if such imprecise models must be pro-
cessed by an ACIS based system, “healing” of such models is necessary to establish the desired precision and accu-
racy.

Bad geometry can cause boolean operations, such as imprinting and webcutting, to fail. However, it usually has little
effect on meshing operations.

Analyzing Geometry

The following command analyzes the ACIS geometry and will indicate problems detected. Note that it is not neces-
sary to analyze the geometry before healing; however, it can be useful to analyze first rather than healing unnecessar-
ily. Also note that healer analysis can take a bit of time, depending on the complexity of the geometry and how bad
the geometry is.

Healer Analyze Body <id_range> [logfile ['filename'] [display]]
The outputs include an estimate of the percentage of good geometry in each body. The optional logfile will include
detailed information about the geometry analysis. By default CUBIT will also highlight the bad geometry in the
graphics and give a printed summary indicating which entities are “bad”.
Percentage good geometry in Body 9: 98%

HEALER ANALYSIS SUMMARY:

Analyzed 1 Body: 9

Found 2 bad Vertices: 51, 52

Found 3 bad Curves: 76, 77, 80

Found 2 bad CoEdges. The Curves are; 76
Found 1 Bodies with problems: 9

Journaled Command: healer analyze body 9

If you try to do a webcut or boolean operation through the indicated entities, it will likely fail. The actual problem is
not indicated here (future versions of CUBIT may include more detailed information), but common problems include
vertices that do not lie on curves, and curves that do not lie sufficiently close to surfacegalitiage geometrgom-
mands work independently of the healer and give more detailed information.
You can control the outputs from the healer with the following commands:

Healer Set OnShow {highlight|draw|none}

Healer Set OnShow {badvertices|badcurves|badcoedges|badbodies|all} {On|Off}

Healer Set OnShow Summary {On|Off}

These settings allow you to highlight, draw or ignore the bad entities in the graphics. You can control which entity

94 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

types to display, as well as whether or not to show the printed summary at the end of analysis.

After you have analyzed the geometry (which can take some time), you can show the bad geometry again with the
“show” command. This command simply uses cached data (healing attributes — see the next section) from the previ-
ous analysis.

Healer Show Body <id_list>

Healing Attributes

Once the geometry is analyzed, the results are stored as attributes on the solid model - this allows you to use the
“show” command to quickly display the bad geometry again. The results attributes are automatically removed when
the geometry is exported or any boolean operations are performed. They can also be explicitly removed with the
command:

Healer CleanAtt Body <id_range>

You can force the results to be removed immediately after each analyze operation with the “CleanAtt” setting (this
can save a little memory):

Healer Set CleanAtt {On|Off}

AutoHealing
Healing is an extremely complex process. The general steps to healing are:

Preprocess — trim overhanging surfaces and clean topology (remove small curves and surfaces).

Simplify — converts splines to analytic representations, if possible.

Stitch — geometry cleanup and and stitching loose surfaces together to form bodies.

Geometry Build — repairing and building geometry to correct gaps in the model.

Post-Process — calculating pcurves and further repairing bad geometry.

Make Tolerant Curves & Vertices — a last optional step that allows special handling of unhealed entities for bool-
eans — allowing inaccurate geometry to be tolerated.

oukrwnpE

Autohealingmakes these steps pushbutton with the following command:

Healer Autoheal Body <id_range> [rebuild] [keep] [maketolerant]
[logfile ['logfilename’] [display]]

The “rebuild” option actually unhooks each surface, heals it individually, then stitches all the surfaces back together
and heals again. In some cases this can more effectively fixup the body, although it is much more computationally
intensive and is not recommended unless healing is unsuccessful.

The “maketolerant” option will make the edgeserantif ACIS is unable to heal them. This can result in successful
booleans even if the body cannot be fully healed — ACIS can then sometimes “tolerate” the bad geomety. Note that
thehealer analyzeommand will still show these curves as “bad”, even though they are tolerantvalilate geom-

etry commands however take this into consideration.

The output from the autoheal command will include an analysis of the geometry — this output is controlled with the
same “onshow” settings described earlier in the analysis section. The optional logfile will include detailed informa-
tion about the healing process.

Later versions of CUBIT will allow you to individually control each step and the internal tolerances used within. At
this time only the commands documented here are supported.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual95

CHAPTER 4 . Geometry

What if Healing is Unsuccessful?

The healing module is under continual development and is improving with every release. However, there will proba-
bly always be situations where healing is unable to fully correct the geometry. This might be okay, as meshing is
rarely affected by the small inaccuracies healing deals with. However, boolean operations on the geometry (webcut,
unite, etc..) can fail if the bad geometry must be processed by the operation (i.e., a webcut must cut through a bad
curve or vertex).

Here are some possible methods to fix this bad geometry:

Return to the source of the geometry (i.e., Pro/ENGINEER) and increase the accuracy. Re-export the geometry.
Heal again using threbuild option.
Heal again using thmake toleranpption.
Remove the offending surface from the body (usgmgove surface <id> noextepdThen construct new surfaces
from existing curves and combine the body back together.
Composite the surfaces over the bad area, mesh and create a net surface from the composite, remove the bad sur-
faces and combine.
6. Export the geometry as IGES, import the IGES file into a new model and look for double surfaces or surfaces that
show up at odd angles. Delete and recreate surfaces as needed and combine the surfaces back together into a
body.

ponE

o

Contact the development team if you need further help with fixing bad geometry.

96 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

Surface Overlap

The surface overlap capability finds surfaces dhatlapeach other, with the capability to specify a distance and

angle range between them. This is useful for debugging geometry imprinting and merging problems, as well as for
finding gaps in large assembly models (oftentimes gaps between components are left in assemblies to accommodate
for tolerance fitup or welds — in general these gaps need to be filled for meshing). Finding non-imprinted, non-
merged or non-touching surfaces manually can be tedious and time consuming. This tool can automate the process.
The command is:

Find [Surface] Overlap [Body <id_list>]

If you do not specify a body list it will work on all the bodies in the model. The command will not check the surfaces
within a given body — rather, it only checks surfaces between bodies. You can optionally limit the search to several
bodies by listing their ids.

Facetted Representation

This command works entirely off of the facetted surface representation of the model (the facetted representation is
what you see in a shaded view in the graphics). There are inherent advantages and disadvantages with this method.
The biggest advantage is avoidance of closest-point calculations with NURBS based geometry, which tends to be
slow. This method also eliminates possible problems with unhealed ACIS geometry. The disadvantage is working
with a less accurate (i.e., facetted) representation of the geometry. To circumvent problems with this facetted geome-
try, various settings can be used to control the algorithm.

You might consider generating a more accurate facetted representation of the model before using this command. This
can be done with th@raphics Tolerance {Angle|Distance} <value> command, followed by adpdate

Hack. This will rebuild the entire graphics tree using the new tolerance values you specified. The angular tolerance
indicates the maximum angle between normals of adjacent surface facets. The default angular toleréro®is 15

sider using a value of’5 The distance tolerance means the maximum actual distance between the generated facets
and the surface. This value is by default ignored by the facetter — consider specifying a reasonable value here for
more accurate results.

Find Overlap Settings
You can list out the settings that find overlap uses with:
Find [Surface] Overlap Settings
These settings can be controlled with the following commands:

set Overlap {Minimum|Maximum} Gap <value=0.0 to 0.01>
set Overlap {Minimum|Maximum} Angle <value=0.0 to 5.0>
set Overlap Normal {ANY |opposite|same}

set Overlap Tolerance <value=0.001>

set Overlap Group {ON|off}

set Overlap List {ON|off}

set Overlap Display {ON|off}

Here is an explanation of each setting:

Gap — Minimum/Maximum - the algorithm will search for surfaces that are within a distance from the minimum to
maximum specified. The default range is 0 to 0.01. Since we are working with facets, testing has shown that this is
about right for most situations, if you are looking for coincident surfaces. If you are looking for gaps, rather than
touching surfaces, you can give a range such as 3.95 to 5.05.

Angle — Minimum/Maximum - the algorithm will search for surfaces that are within this angle range of each other.
The default range is 0.0 to 5.0 degrees. Testing has shown that this range works well for most models. It is usually

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual97

CHAPTER 4 . Geometry

necessary to have a range up to 5.0 degrees even if you are looking for coincident surfaces because of the different
types of facetting that can occur on curvy type surfaces. For example, for the case of a shaft in a hole, the facets of
the shaft usually won't be coincident with the facets of the hole, but may be offset by a certain distance circumferen-
tially with each other. The 5 degree max angle range will account for this. If you find that the algorithm is not finding
coincident surfaces when it should, you can increase the upper range of this value. Note that this parameter is useful
also for finding plates coming together at an angle.

Normal — this setting determines whether to search for surfaces whose normals point towards each other (same),

away from each other (opposite) or either (any). The defaultis ANY, but it may be useful to limit this seapgoto
site, as this would be the usual case for most finds.

Tolerance — two individual facets must overlap by more than this area for a match to be found. Consider the two
cylindrical curves at the interface of the shaft and the block in Figure 5. Note that some of the facets actually over-
lap, even though the curves will analytically be coincident. You can filter out false matches by increasing the overlap
tolerance area.

Group — the surface pairs found can optionally be placed into a group. The name of the group defaults to
“overlap_surfaces”.

List — by default the command lists out each overlapping pair - you can turn this off.

Display — by default the command clears the graphics and displays each overlapping pair — you can turn this off.

v Model Import/Export

Importing/Exporting ACIS Files

The import/export capability of ACIS files has been enhanced to support the binary format (.sab) and to include free
entities (vertices, curves and surfaces) in the file. The import/export commands are:

Import Acis '<acis_filename>' [no_bodies][no_surfaces][no_curves][no_vertices]
[binary|ascii] [current]

Export Acis [Debug] ‘filename' [Body <id_list> Surface <id_list> Curve <id_list>
Vertex <id_list>] [binary|ascii] [current] [overwrite]

When importing or exporting, the filename extension will determine the default file type, be it ascii or binary. At .sat
extension will default to ascii; a .sab extension will default to binary. If you use a different file extension you can

98 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

specify the type with the [binary|ascii] option (with an unsupported extension exporting will default to ascii but
importing requires the type to be specified). Binary files can be significantly faster but are not guaranteed to be
upward compatible nor cross-platform compatible (although testing has determined compatibility between NT and
HP/UX). Please archive your models in ascii format.

The current option will set the default filename for autosave (cntrl-S or File->Save (auto inc)) to the imported file-
name. Also, the filename is then set in the window titlebar.

When importing, you can turn off the import of certain entity types — be it bodies, surfaces, curves or vertices.
When exporting, you can now export individual surfaces, curves and vertices in addition to bodies. The software will

check to see if the file exists already — if it does a dialogue will popup requiring you to confirm an overwrite. The
journaled command will include the [overwrite] option.

Importing/Exporting STEP Files

The ACIS STEP translator has been added to CUBIT. This provides bi-directional functionality for data translation
between ACIS and the file format standards STEP AP203 and STEP AP214.

STEP AP203 is an international standard which defines a neutral file format for representation of configuration con-
trol design data for a product. STEP AP214 is an international standard which defines a neutral file format for repre-
sentatation of automotive design data. It is recommended to use AP214 for exchange of geometry information with
CUBIT.

The commands used to import and export a STEP file are:

Import Step '<step_filename>' [no_bodies][no_surfaces][no_curves][no_vertices]
[HEAL|noheal] [lodfile ['filename [display]]

Export Step ‘filename' [Body <id_list> Surface <id_list> Curve <id_list>
Vertex <id_list>] [logdfile ['filename'] [display]] [overwrite]

As with ACIS file import, you can control which types of entities to read. By default, bodies are automatically healed
when imported - if this causes problems, you can disable this option. You can also optionally request a detailed log-
file of the conversion process and display it in a text editor.

As with ACIS file export, you can specify which individual entities to export. Again, you can produce a logfile show-
ing the conversion status.

To export a STEP file from Pro/ENGINEER, from the Export STEP Dialog, Press Options...

In step_config.pro add: STEP_EXPORT_FORMAT AP214 CD. Also be sure your export option Sdetgolf
the geometry has problems in CUBIT, you may need to increase the geometry accuracy in Pro/ENGINEER.

Importing/Exporting IGES Files

The ACIS IGES translator has been added to CUBIT. This provides bi-directional functionality for data translation
between ACIS and the IGES (Initial Graphics Exchange Specification) format.

The commands to import/export IGES files are:

Import Iges '<iges_filename>' [no_bodies][no_surfaces][no_curves][no_vertices]
[nofreesurfaces] [logdfile [filename'] [display]]

Export Iges ‘filename' [Body <id_list> Surface <id_list> Curve <id_list>
Vertex <id_list>] [logdfile ['filename'] [display]] [overwrite]

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual99

CHAPTER 4 . Geometry

The options here work similar to those for STEP, except on imponofineesurfacesption will automatically con-
vert free surfaces to bodies. By default this option is off.

This translator supports Manifold Solid B-rep Objects (MSBO) as well as Trimmed Surface Objects. By default,
MSBO objects (i.e., bodies) will be converted to trimmed surfaces. If you want to support MSBO objects during
import/export, use this command (the defautiffs

set AcisOption Integer ‘iges_proc_msbo’ On

You can add this to your .cubit file so it is turned on during each session of CUBIT.

v Groups

The capability to store mesh entities in groups has been added to CUBIT. Groups can also now be deleted. The abil-
ity to propagate hexes and store them in groups has been added. In addition, element quality groups can now be cre-
ated.

Add/Remove/Xor/Delete/Cleanout

The capability to add, remove, and xor mesh entities in the group command is possible. The commands are basically
the same as for adding, removing , or xoring a geometric entity for groups.

Group ['name’ | <id>] Add {hex|face|edge|node <id_list>}
Group ['name’ | <id>] Remove {hex|face|edge|node <id_list>}
Group ['name' | <id>] Xor {hex|face|edge|node <id_list>}

Xor means if an entity is already in the group, the command will delete this entity from the group. Ifitis not in the
group, the entity is then added to the group.

Groups can be deleted with the following command:
Delete Group <id range> [propagate |
The optionpropagatewill delete the group specified and all of its contained groups recursively.
You can remove all of the entities in a group viadleanoutcommand:
Group <group_id_range> Cleanout [geometry|mesh] [propagate]
By default all entities will be removed — optionally you can cleanout just geometry or mesh entities. As in delete, the
propagateoption will cleanout the group specified and all of its contained groups recursively.
Groups in Graphics
When groups are created, they are now added to segments in the graphics tree. This means that you now have the
ability to select a group graphically with the mouse, just like any other CUBIT entity. This can be useful in large

models with lots of groups.

When displaying a group containing hexes, only the outside skin of the hexes will be displayed.

100 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

Propagated Hex Groups

The ability to propagate hexes given a starting face or surface and store them in groups has been added. There are
various forms of this command, best illustrated by example.

Note: the examples below are based on first executing these commands:

brick width 10
volume 1 size 1
mesh volume 1

Starting on a Face
When starting on a face, the propagation method can end at a surface, end at a face or can end after the number of
times the user specifies.

Ending at a sudceGroup ['name’ | <id>] Add Propagate Face <id range> End Surface <id>

example: group 2 add propagate face 1 11 21 end surface 2
result: Group 2 will be created containing 30 propagated hexes (10 layers of 3 hexes)
Ending at a face: Group ['name' | <id>] Add Propagate Face <id> End Face <id>
example: group 2 add propagate face 1 end face 1721
result: Group 2 will be created containing 5 propagated hexes (5 layers of
1 hex)
Note: Ending at a face requires starting at one face at one time, but ending at surface

allows multiple start faces

Number of TmesGroup ['name’ | <id>] Add Propagate Face <id range>
Times <number>
example: group 2 add propagate face 2 times 4
result: Group 2 will be created containing 4 propagated hexes (4 layers of 1 hex)

Both methods, ending at surface, end at a face or number of times, can be used with the "multiple" option which will
create a grandparent (top-level), parent (mid-level, contained within the grandparent) and child (bottom level, con-
tained within the parent) groups. The child groups will contain each hex layer (specified number of layers per child
group), all organized into a single parent group, which is organized underneath the group ID given to the command.
Subsequent propagation commands could then be executed adding to the grandparent group, but creating a new par-
ent and child groups. This way multiple propagation “sets” can be stored in one grandparent group, if desired.

Ending at a sudceGroup ['name’ | <id>] Add Propagate Face <id> End Surface <id>

with multiple Multiple <number>
example: group 2 add propagate face 1 end surface 2 multiple 1
result: Ten groups will be created and stored with their respective ids, one for each layer of hexes.

These groups will be stored in the parent group, Group 3, and Group 3 will be stored in the
grand parent group, Group 2. A subsequent propagation command could be executed add-
ing to group 2 (the grandparent), which would create a single group contained in group 2
(the parent), containing the hex layer groups (the children).

Ending at adce: Group ['name’ | <id>] Add Propagate Face <id> End Surface <id>
with multiple Multiple <number>
example: group 2 add propagate face 1 end face 1721 multiple 1

Document Version 4/18/00 CUBIT Version 4.0 Reference ManudlO1

CHAPTER 4 . Geometry

result: 5 groups will be created and stored with their respective ids, one for each layer of hexes.
These groups will be stored in the parent group, Group 3, and Group 3 will be stored in the
grand parent group, Group 2. A subsequent propagation command could be executed add-
ing to group 2 (the grandparent), which would create a single group contained in group 2
(the parent), containing the hex layer groups (the children).

If the end surface or end face is ambiguous, a node direction can be specified to direct the propagation.

When specify the node direction, the node has to be picked such that when the hexes are propagated, the picked node
lies in these propagated hexes. If that node is never reached while propagating, the direction is not found and zero
hexes will be included in the specified group.

Ending at adce: Group ['name’ | <id>] Add Propagate Face <id> End Face <id>
with direction Direction Node <id>

example: group 2 add propagate face 1721 end face 1 direction node334

result: group 2 will be created containing 6 hexes

Ending at a sudceGroup ['name’ | <id>] Add Propagate Face <id range>

with direction End Surface <id> Direction Node <id>

example: group 2 add propagate face 1 end surface 2 direction node 334

result: group 2 will be created containing 10 hexes

Note The direction command and the multiple command can be used together

(i.e group 2 add propagate face 1721 end face 1 multiple 2 direction nogle 334

Number of TmesGroup ['name' | <id>] Add Propagate Face <id> Times <number>

with multiple Multiple <number>
example: group 2 add propagate face 1 times 10 multiple 5
result: Two groups will be created and stored with their respective ids,

these two groups will be stored in the parent group, Group 3, and Group 3
will be stored in the grand parent group, Group 2.

If number of times is specified and the direction is ambiguous, a surface direction or a node direction can be specified
to direct the propagation. The node direction has the same condition as when ending at a surface or face and that is it
must lie in the propagated hexes.

Number of TmesGroup ['name’ | <id>] Add Propagate Face <id> Times <number>

with direction Direction [surface <id> | node <id>]

example: group 2 add propagate face 1721 times 4 direction surface 2

example: group 2 add propagate face 1721 times 4 direction node 334

result: group 2 will be created contained 4 hexes

Note The direction command and the multiple command can be used together.

(i.e.group 2 add propagate face 1721 times 4 multiple 2 direction surjace 1

Starting on a Surface
Starting on a surface can end at a surface or can end after the number of times the user specifies.

Ending at a sudceGroup ['name’ | <id>] Add Propagate Surface <id> End Surface <id>
example: group 2 add propagate surface 1 end surface 2
result: group 2 will be created containing 1000 hexes

Number of TmesGroup ['name' | <id>] Add Propagate Surface <id> Times <number>
example: group 2 add propagate surface 1 times 4
result: group 2 will be created containing 400 hexes

Both methods, ending at surface or number of times, can be used with the "multiple” option which will create several

102 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

groups depending upon the multiple number specified.

Ending at a sudceGroup ['name' | <id>] Add Propagate Surface <id> End Surface <id>

with multiple Multiple <number>
example: group 2 add propagate surface 1 end surface 2 multiple 2
result: Five groups will be created and stored with their respective ids of multiple 2,

these groups will be stored in the parent group, Group 3, and Group 3
will be stored in the grand parent group, Group 2.

Number of TmesGroup ['name' | <id>] Add Propagate Surface <id> Times <number>

with multiple Multiple <number>
example: group 2 add propagate sur face 1 times 10 multiple 5
result: Two groups will be created and stored with their respective ids of multiple 5,

these two groups will be stored in the parent group, Group 3, and Group 3
will be stored in the grand parent group, Group 2.

If number of times is specified and the direction is ambiguous, the surface direction or the node direction can be spec-
ified to direct the propagation. If the end surface is specified, only a node direction can be specified to direct the prop-
agation. When specifying the node direction, the node has to be picked such that when the hexes are propagated, the
picked node lies in these propagated hexes. If that node is never reached while propagating, the direction is not found
and zero hexes will be included in the specified group.

Note for the examples below, the result can be seen by executing these commands:

brick x 10

vol 1 size 1
brick width 10
body 2 move 10
volume all size 1
merge all

mesh volume all

Number of TmesGroup ['name' | <id>] Add Propagate Surface <id> Times <number>

with direction Direction [surface <id> | node <id>]
example: group 2 add propagate surface 6 times 4 direction surface 4
example: group 2 add propagate surface 6 times 4 direction node 1530
result: group 2 will be created containing 400 hexes

Ending at a sudceGroup ['name’ | <id>] Add Propagate Surface <id> Times <number>

with direction Direction Node <id>

example: group 2 add propagate surface 6 end surface 12 direction node 1530

result: group 2 will be created containing 400 hexes

Note The direction command and the multiple command can be combined

(i.e.group 2 add propagate surface 6 times 4 multiple 2 direction node 1530

Propagated Goup Naming Corvention
A special naming convention can be used for the propagated groups, best described by an example.
The following command will create a hierarchy of logically named groups, as follows.

group ‘W1P1T1’ add propagate surf 1 end surf 2 multiple 1
The hierarchy looks like this:
w1

W1P1
W1P1T1

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl03

CHAPTER 4 . Geometry

W1P1T2
W1P1T3

W1P1T10
Where W1P1 is contained within W1, and W1P1T1, W1P1T2, etc.. are contained within W1P1.

The software simply looks for numerical numbers in the group hame and parses out the correct grandparent, parent
and child names from the substrings. There must be exactly 3 substrings in the group name, each ending with an inte-
ger for the command to work properly.

A subsequent command:
group ‘W1P2T1’ add propagate surf 3 end surf 5 multiple 1
will add a parent group to W1, called W1P2, and the subsequent child groups:

w1
W1P1
W1P1T1
W1P1T2
W1P1T3

W1P1T10
W1P2

W1P2T1

W1P2T2

W1P2T3

W1P2T10

Quality Groups

Groups can also be formed from the hexes or faces obtained from the quality command. Each group formed using
quality can be drawn with its associated quality characteristics {i.e jacobian low .2 high .3} automatically.

command: group ['name’|<id>] add quality {volume|surface|group|hex|face} <id range>
<metric name> [low <value> | bottom <value> |
top <number> | bottom <number> | malformed]
example:group 2 add quality volume 1 jacobian
result: (if the meshed brick from the first note in the sed®impagated Hex Groupsis used)
Group 2 will be created and it will contain 1000 hexes with quality characteristics.
If the group is drawn, its quality characteristics will be displayed automatically.

104 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

Entity Filtering

CUBIT entity filtering provides the user with the capability to quickly select the entities needed and to parse out those
that match certain entity characteristics. In general, think of filtering as starting with a list of entities, than passing
that list through a filter or set of filters which removes entities not meeting the filter criteria.

In general there are two modes to filtering:

1. Execute a filterimmediately This allows you to list, draw, highlight or select entities that meet a certain attribute
criteria. For example, draw all the surfaces with scheme pave or draw all elements with a certain quality charac-
teristic.

2. Register a filter which is used in further operations Registered filters can be used to filter entities from the
mouse pick list or keyed-in entity lists. Filters can be chained together (in a boolean AND/OR mode) to result in
entities meeting a certain set of criteria.

Executing Filters

There are a large variety of filter types that can be executed immediately. Itis generally recommended that the filters
be run from the GUI, where you can see all of the types available. An example of the syntax is:

Execute [filter] {Volume|Surface|Curve} Mesh_Scheme <mesh_scheme>

[INCLUDE|Exclude] [on {Volume|Surface|Curve} <id_range>]

[Draw|Highlight] [into group {id|'name'}] [select] [add]
The default is to run on all entities of the specified type; optionally you can give an entity list (i.e., get all paved sur-
faces on volumes 1 to 3). If you use tiNCLUDE default, the filter will return all entities matching the input. If the
EXCLUDE option is used, all entities other than the input will be returned (i.e., all surfaces not pavedxdhee
command will always result in a listing of the entities — you can also draw or highlight them in the graphics. If draw-
ing, if you use thé\dd qualifier they will be added to the display; otherwise the graphics are cleared first then they
are drawn. Thé&elect option will select the entities in the GUI (i.e., they will be current on the right mouse button

and copied into the current selection list, if it matches the type of entities being filtered). You can also place the fil-
tered entities into a group.

Quality Filter Commands

The filters support quality ranges of hexes or faces. Here is an example that draws the 10 hexes with the worst jaco-
bian values in the model:

execute filter hex quality_range Jacobian bottom 10 include on hex all draw
This command will draw all the unshared element edges in the model, useful for finding cracks in a mesh:
execute filter edge owned_hexes equal_to 1 include on edge all draw

Other similar filters exist.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl05

CHAPTER 4 . Geometry

Execute Filter Commands
Following is a list of currently supported execute filter commands:

Execute [filter] Group Type <group_type>
[INCLUDE|exclude] [on Group <id_range>] [Draw|Highlight]
[into group {id|'name'}] [select] [add]

Execute [filter] {Group|Body|Volume|Surface|Curve|Vertex} Is_Meshed
[INCLUDE|exclude] [on {Group|Body|Volume|Surface|Curve|Vertex}] <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Group|Body|Volume|Surface|Curve|Vertex} Is_Visible
[INCLUDE|exclude] [on {Group|Body|Volume|Surface|Curve|Vertex} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Group Ref_Entities_Only
[INCLUDE|exclude] [on Group <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Group Mesh_Entities_Only
[INCLUDE|exclude] [on Group <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Group Is_Empty
[INCLUDE|exclude] [on Group <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Body Volume {greater_than|greater_than_equal|less_than|equal_to|
less_than_equal <value>} [INCLUDE|exclude] [on Volume <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Body|Volume|Surface|Curve} Interval_Number
{greater_than|less_than|equal_to <value>}
[INCLUDE|exclude] [on {Body|Volume|Surface|Curve} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Body Is_Sheet
[INCLUDE|exclude] [on Body <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Body Contained_Volumes Equal_To <number>
[INCLUDE|exclude] [on Body <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Body|Volume} Contained_Surfaces Equal_To <number>
[INCLUDE|exclude] [on {Body|Volume} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Body|Volume|Surface} Contained_Curves Equal_To <number>

[INCLUDE|exclude] [on {Body|Volume|Surfaces} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

106 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

Execute [filter] {Body|Volume|Surface|Curve} Contained_Vertices Equal_To <number>
[INCLUDE|exclude] [on {Body|Volume|Surface|Curve} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Volume Range {greater_than|greater_than_equallless_than|equal_to|
less_than_equal <value>} [INCLUDE]|exclude] [on Volume <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Volume|Surface|Curve} Mesh_Scheme <mesh_scheme>
[INCLUDE|exclude] [on {Volume|Surface|Curve} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Volume|Surface} Smooth_Scheme <mesh_scheme>
[INCLUDE|exclude] [on {Volume|Surface} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Surface Area {greater_than|greater_than_equal|less_than|equal_to|
less_than_equal <value>} [INCLUDE|exclude] [on Surface <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Surface Is_Source
[INCLUDE|exclude] [on Surface <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Surface Is_Target
[INCLUDE|exclude] [on Surface <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Surface Is_Linking
[INCLUDE|exclude] [on Surface <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Surface|Curve} Is_Periodic
[INCLUDE|exclude] [on {Surface|Curve} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Surface Attached_Volumes Equal_To <number>
[INCLUDE|exclude] [on Surface <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Surface|Curve|Vertex} Merge_Partners
[Equal_To|Less_Than|Greater_Than <number>]
[INCLUDE|exclude] [on {Surface|Curve|Vertex} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Hex|Face} Quality Range <metric_name>
{Low <double>|High <double>| Top <integer>| Bottom <integer>}
[INCLUDE|exclude] [on Hex|Face <id_range>] [Draw|Highlight]
[into group {id|'name'}] [select] [add]

Execute [filter] {Surface|Curve} Geometry_Type <geometry_type>
[INCLUDE|exclude] [on {Surface|Curve} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Document Version 4/18/00 CUBIT Version 4.0 Reference ManudlO7

CHAPTER 4 . Geometry

Execute [filter] Surface Sizing_Function <sizing_function_type>
[INCLUDE|exclude] [on Surface <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Curve|Edge}
Length {greater_than|greater_than_equal|less_than|equal_to|
less_than_equal <value>} [INCLUDE|exclude] [on {Curve|Edge} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Curve Attached_Surfaces Equal_To <number>
[INCLUDE|exclude] [on Curve <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Curve Interval_Setting {Equal_To|Less_Than|Greater_Than <number>}
[INCLUDE|exclude] [on Curve <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Curve Is_Tolerant
[INCLUDE|exclude] [on Curve <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Vertex Attached_Curves Equal_To <number>
[INCLUDE|exclude] [on Vertex <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Body|Volume|Surface|Curve|Vertex|Hex|Face|Edge|Node}
Color <type>
[INCLUDE|exclude]
[on {Body|Volume|Surface|Curve|Vertex|Hex|Face|Edge|Node} <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Group|Body|Volume|Surface|Curve|Vertex|Hex|Face|Edge|Node}
Related_To
[on {Body|Volume|Node|Edge|Face} <id_range>]
[INCLUDE|exclude] [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Hex Full_Hex [INCLUDE|exclude] [on Hex <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Hex Node_Hex [INCLUDE|exclude] [on Hex <id_range>]
[Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Face|Edge} Owned_Hexes Equal_To <number> [INCLUDE|exclude]
[on {Face|Edge} <id_range>] [Draw|Highlight] [into group {id|'name'}]
[select] [add]

Execute [filter] Face Free_Faces [INCLUDE|exclude]
[on Face <id_range>] [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Edge Owned_Faces Equal_To <number> [INCLUDE|exclude]
[on Edge <id_range>] [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Edge Free_Edges [INCLUDE|exclude]
[on Edge <id_range>] [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Node Position_Fixed [INCLUDE|exclude]
[on Node <id_range>] [Draw|Highlight] [into group {id|'name'}] [select] [add]

108 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

Registering Filters
When filters are registered they can be used in conjunction with mouse picking and entity parsing. By default, the
entities found during a mouse pick list will be passed through any registered filters. If any entities are removed during
this process a warning message will be echoed to the output window. You can control whether filtering occurs during
mouse selection with this command:

set Pick Filter [ON]off]

In GUI dialogue entity list fields, the registered filters will always filter the input list. On the command line you can
cause draw,highlight and list commands to use the filters with the following setting:

set Parse Filter [on|OFF]
The draw, highlight and list commands can be override this setting by the options [filter | no filter].

There currently is not a way to filter every input list on the command line nor turn off the registered filters in GUI dia-
logue input lists.

Some of the GUI pages register filters internally — this can help the user to avoid unnecessary picks. For example,
when webcutting with a plane normal to a curve, the end of the curve needs to be picked. Thus, after the curve is
selected a filter is registered allowing only vertices attached to the end of the selected curve to be picked. When pick-
ing you will be reminded that certain items are being filtered out via an information message in the output window.
This can be very helpful when trying to pick vertices that are coincident with other vertices, etc.. This is taded a
definedfilter. User registered filters are calleser defined

An example of a command to register a filter follows:

Register [filter] Surface Geometry Type
{spline|plane|cone|cylinder|sphere|torus|best fit] [and|or] [include|exclude]

Filtering With Registered Filters

After the filters are registered, they can be exercised with:
Filter <entity> <id range>

For example, if a surface filter was registered (i.e register surface related_to volume 1), the command:
Filter surface all

will display the ids of the surfaces that pass this filter. If there are more than one surface filter is registered, the filter
command will consider all of them.

If an entity is to be filtered with respect to other registered entity filters, the range identifier "in" can be used to con-
sider those other entity filters. For example, suppose there are node and face filters registered. To filter hex entities
with consideration to the face and node filters, the command would be:

Filter hex in face <id range> in node <id range> {filter hex in face all in node all
The effect of this command will be to first parse and filter the node entities; then to parse and filter the face entities

with respect to the nodes that pass the node filter(s). Then to parse and filter (if there are hex filters) the hex entities
with respect to the faces that pass the previous face filter(s).

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl09

CHAPTER 4 . Geometry

Filter Operations

List
The filter(s) registered can be listed by entity or they can all be listed at one time. To list by entity, the command is:

List <entity_type> Filter {i.e list curve filte}
To list all the filters, the command idist filter all
Suppose these commands have been entered,
register curve length equal_toamdregister curve mesh_scheme bias

An example of thdist curve filtercommand output is shown below:

filter type status
1) curve_length (=5) {include}active User Defined
2) curve_mesh_scheme (bias) {or, include} active User Defined
Suppress/Resume

Each registered filter is at first "active". The user can make this filter inactive by suppressing the filter. To suppress
the filter, the command is:

Filter Suppress <entity> Filter <number>

Using the example above, to suppress the curve_mesh_scheme filter, the command is:
filter suppress curve filter 2

To make it active again, the commandfitter resume curve filter 2

All the filters can be suppressed/ unsuppressed at one time with the command:
Filter {suppress | resume} All

Move
If there are multiple filters, these filters can be re-arranged. The command is:

Filter Move <entity> Filter <number> to <number>

Using the curve filters example above, to move the curve_mesh_scheme above the curve_length filter, the command
is:

filter move curve filter 2 to 1

The resultindist curve filtercommand would now output:

filter type status
1)) curve_mesh_scheme (bias) {include} active User Defined
2) curve_length (=5) {or, include} active User Defined

Delete
Once a filter has been registered, it can be deleted with the command:

Filter Delete <entity_type> Filter <number>

Using the curve filter examples again, to delete the first filter (curve_length), the command is:

110 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 " Geometry

filter delete curve filter 1

All the filters can be deleted at one time with the commdiftér delete all

Register Filter Commands
A list of the currenty available register commands follows:

Register [filter] Curve Related_To {body|volume|surface|vertex <id>}
[and|or] [include|exclude]

Register [filter] Curve Geometry_Type {arc|segmented|spline|line|point}

Register [filter] Curve Length {greater_than|greater_than_equal|less_than|
equal_to|less_than_equal <value>} [and|or] [include|exclude]

Register [filter] Curve Attached_Surfaces Equal_To <number> [and|or]
[include|exclude]

Register [filter] Curve Mesh_Scheme {bias|dualbias|equal|featuresize|morph}
[and|or] [include|exclude]

Register [filter] Curve Is_Tolerant [and|or] [include|exclude]

Register [filter] Vertex Related_To {curve|surface|volume|body<id>} [and|or]
[include|exclude]

Register [filter] Vertex Attached_Curves Equal_To <number> [and|or] [include|exclude]

Register [filter] Surface Area {greater_than|greater_than_equal|less_than|
equal_to|less_than_equal <value>} [and|or] [include|exclude]

Register [filter] Surface Attached Volumes Equal_To <number> [and|or]
[include|exclude]

Register [filter] Surface Mesh_Scheme
{map|pave|parallelpave|pentagaon|submap|triangle|trimap |
trimesh|tripave} [and|or] [include|exclude]

Register [filter] {surface|volume} Smooth_Scheme <type> [and|or] [include|exclude]

**xx%k possible smooth schemes are: laplacian (freeffixed), equipotential (free/fixed),
isoparametric, centroid area pull (free/fixed), replicate, optimize (freeffixed/jacobian/optms)
winslow (free/fixed), randomize

Register [filter] Surface Sizing_Function {constant|linear|curvature|super|test|exodus|
inv_intlinterval|none} [and|or] [include|exclude]

Register [filter] Surface Geometry Type
{spline|plane|cone|cylinder|sphere|torus|best fit] [and|or] [include|exclude]

Register [filter] Surface {is_linking|is_source|is_target} [and|or] [include|exclude]

Register [filter] Surface Related_To {vertex|curve|volume|body <id>} [and|or]
[include|exclude]

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudlll

CHAPTER 4 . Geometry

Register [filter] Volume Range {greater_than|greater_than_equal|less_than|equal_to|
less_than_equal <value>} [and|or] [include|exclude]

Register [filter] Volume Mesh_Scheme
{dice|map|plaster|project|pyramid|rotate|sweep|translate}
[and|or] [include]exclude]

Register [filter] Volume Related_To {vertex|curve|surface|body} [and|or]
[include|exclude]

Register [filter] Body Volume {greater_than|greater_than_equal|less_than|
equal_tol|less_than_equal <value>} [and|or] [include|exclude]

Register [filter] Body Related_To [vertex|curve|surface|volume<id>] [and|or]
[include|exclude]

Register [filter] Body Is_Sheet [and]|or] [include|exclude]

Register [filter] Body Contained_Volumes Equal_To <number> [and|or]
[include|exclude]

Register [filter] {curve|surface|vertex} Merge_Partners
[equal_to|greater_than|less_than <number>]
[and|or] [include]exclude]

Register [filter] {vertex|curve|surface|volume|body} Is_Meshed [and|or]
[include|exclude]

Register [filter] {curve|surface} Is_Periodic [and|or] [include|exclude]

Register [filter] {vertex|curve|surface|volume|body|hex|face|edge|node}
Color <color> [and|or] [include|exclude]

Register [filter] {vertex|curve|surface|volume|body} Visibility [and|or] [include|exclude]

Register [filter] {curve|surface|volume|body} Interval_Number
{equal_to|greater_than|less_than <number>} [and|or] [include|exclude]

Register [filter] {curve|surface|volume|body} Interval_Setting {default|soft|hard}
[and|or] [include]exclude]

Register [filter] {surface|volume} Smooth_Scheme <type> [and|or] [include|exclude]

*rxxxk possible smooth schemes are: laplacian (freeffixed), equipotential (freeffixed), isoparametric
centroid area pull (freeffixed), replicate, optimize (free/fixed/jacobian/optms)
winslow (freeffixed), randomize

Register [filter] {body|volume} Contained_Surfaces Equal_To <number> [and|or]
[include|exclude]

Register [filter] {body|volume|surface} Contained_Curves Equal_To <number> [and|or]
[include|exclude]

Register [filter] {body|volume|surface} Contained_Curves Equal_To <number> [and|or]
[include|exclude]

Register [filter] {hex|face} Quality Range <metric_name>
{low]high|top|bottom <number> | malformed}

112 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4 . Geometry

[and|or] [include|exclude]
*** nossible metric names are: aspect ratio, aspect ratio gamma, skew, taper, warpage,
element area, stretch, maximum/mininum angle, oddy, folding, jacobian, element volume
diagonal ratio, dimension, scaled jacobian

Register [filter] Hex Related_To {body|volume|node|face| edge <id>} [and]or]
[include|exclude]

Register [filter] Hex Full_Hex [and|or] [include|exclude]
Register [filter] Hex Node_Hex [and|or] [include|exclude]

Register [filter] Face Related_To {body|volume]|surface|hex|edge|node<id>} [and|or]
[include|exclude]

Register [filter] Edge Related_To {body|volume|surface|curve|verteX|
hex|face|node<id>} [and]|or] [include|exclude]

Register [filter] Node Related_To {body|volume]|surface|curve|vertex <id>|
hex|face|edge} [and|or] [include|exclude]

Register [filter] Node Position_Fixed [and|or] [include|exclude]
Register [filter] Edge Length

{greater_than|greater_than_equal|less_than|equal_to|less_than_equal <value>}
[and|or] [include|exclude]

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl13

CHAPTER 4 . Geometry

114 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

Bijg(d
Chapter 5. Mesh Generation

v Introduction...115

v Interval Assignment...117

v Meshing Schemes...121

v Automatic Scheme Selection...157

v Mesh-Related Topics...159

v Mesh Smoothing...161

v Mesh Deletion...166

v Node and NodeSet Repositioning...167
v Mesh Importing and Duplicating...167
v Mesh Quality Assessment...169

v Mesh Validity...178

v Introduction

The methods used to generate a mesh on existing geometry are discussed in this chapter. The
definitions used to describe the process are first presented, followed by descriptions of interval
specification, mesh scheme selection, and available curve, surface, and volume meshing
techniques. The chapter concludes with a description of the mesh editing capabilities, and the
guality metrics available for viewing mesh quality, .

Element Types

For each topology type of entity in the model geometry, CUBIT can discretize the entity using
one or several types of basic elements; for each order entity in the geometry (vertex, curve, etc.),
CUBIT uses a basic element designator to describe the corresponding entity or entities in the
mesh. A given geometric topology entity can be discretized with one or several kinds of basic
elements in CUBIT. For example, a geometric surface in CUBIT is discretized into a number of
faces; this is the basic element designator for surfaces. These faces can consist of two types of
basic elements, quadrilaterals or triangles. The basic element designators corresponding to each

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudll5

CHAPTER 5 . Mesh Generation

type of geometry entity, along with the types of basic elements supported in CUBIT, are
summarized in Table 5-1.

Table 5-1: Basic element designators and elements corresponding to geometry entities.

116

E(?]?i?ym'l'e; F?é B%igg:]ear?oerm Basic Element(s) In CUBIT
Vertex Node Node

Curve Edge Edge

Surface Face Quadrilateral, Triangle

Volume Element Hexahedron, Tetrahedron, Pyramid

For each basic element, CUBIT also supports the definition of several element types, whose use
depends on the level of accuracy desired in the target finite element analysis. For example,
CUBIT can write both linear (4-noded) and quadratic (8- or 9-noded) quadrilaterals. The
element type used for a geometry entity is specified after meshing occurs, as part of the
boundary condition specification. See... for a description of that process and the various element
types available in CUBIT.

Each mesh entity is associated with a geometry entity which owns it. This associativity allows
the user to mesh, display, color, and attach attributes to the mesh through the geometry. For
example, setting a mesh attribute on a surface affects all faces owned by that surface.

Mesh Generation Process

Starting with a geometric model, the mesh generation process in CUBIT consists of four
primary steps:

1) Setinterval size and count for groups of or individual entities

2) Set mesh schemes

3) Generate the mesh for the model

4) Inspect mesh for quality and suitability for targeted analysis

There are also mechanisms for improving mesh quality locally using smoothing and local mesh

topology changes. For complex models, this process is usually iterative, repeating steps two to
four above.

The mesh for any given geometry is usually generated hierarchically. For example, if the user
issues a command to mesh a volume, first its vertices are meshed with nodes, then curves are
meshed with edges, then surfaces are meshed with faces, and finally the volume is meshed with
hexes. Vertex meshing is of course trivial and thus the user is given little control over this
process. However, curve, surface, and volume meshing can be directly controlled by the user.

Each of the steps listed above are now described in detail.

CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

v Interval Assignment

Mesh density is usually controlled by tirgervals,i.e. the number of mesh edges, specified on
curves. Intervals are set either directly by specifying the interval count for a curve, or by
specifying a desired size for each interval on a curve. Intervals can be specified for curves
individually, or indirectly by specifying intervals for higher order geometry containing those
curves. Because of interval constraints imposed by various meshing algorithms in CUBIT, the
assignment of intervals to curves is not completely arbitrary. For this reason, a global interval
match must be performed prior to meshing one or more surfaces or volumes.

Interval Firmness

Before describing the methods used to set and change intervals, it is important that the user
understand the concept of interval firmness. An interval firmness value is assigned to a geometry
curve along with an interval count or size; this firmness is one of the following values:

hard: interval count is fixed and is not adjusted by interval size command or by interval matching

soft; current interval count is a goal and may be adjusted up or down slightly by interval
matching or changed by other interval size commands

default: default firmness setting, used for detecting whether intervals have been set explicitly by
the user or by other tools

Interval firmness is used in several ways in CUBIT. Each curve is assigned an interval firmness
along with an interval count or size. Commands and tools which change intervals also affect the
interval firmness of the curves. Those same commands and tools which change intervals can
only do so if the curves being changed have a lower-precedence interval firmness. The firmness
settings are listed above in order of decreasing precedence. For example, some commands are
only able to change curves whose interval firmnessoift or default ; curves withhard

firmness are not changed by these commands.

More examples of interval setting commands and how they are affected by firmness are given
in the following sections.

A curve’s interval firmness can be set explicitly by the user, either for an individual curve or for
all the curves contained in a higher order entity, using the command:

{geom_list} Interval {Default | Soft | Hard}

All curves are initialized with an interval firmness défault , and any command that changes
intervals (including interval assignment) upgrades the firmness to astédast

Explicit Specification of Intervals

The density of edges along curves is specified by setting the actual number of intervals or by
specifying a desired average interval size. The number of intervals or interval size can be
explicitly set curve by curve, or implicitly set by specifying the intervals or interval size on a
surface or volume containing that edge. For example, setting the intervals for a volume sets the
intervals on all curves in that volume.

The commands to specify the number of intervals at the command line are:
{geom_list} Interval <intervals>

{geom_list} [Interval] Size <interval_size>

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudll7

CHAPTER 5 .

Mesh Generation

The first command above sets interval counts. When setting interval counts for surfaces,
volumes, bodies and groups, an intervals firmnessodff is assigned to the owned curves.
When setting the interval count for a curve, a firmneseuaf is assigned.

Interval size may be specified as well; the interval count for each owned curve is computed by
dividing the curve’s arc length by the specified interval size. Interval size commands always
assign a firmness gbft to the specified entities.

The user can scale the current intervals or size with the following commands. Scaling is done
on an entity by entity basis.

{geom_list} Interval Factor <factor>
{geom_list} [Interval] Size Factor <factor>

Vertices are not allowed in tlgeom_list for these commands.

Automatic Specification of Intervals

In addition to specifying intervals explicitly based on a known count or size, CUBIT is also able
to compute interval counts automatically based on characteristics of the model geometry. The
following automatic interval setting command can be used:

{geom_list} Size Auto [Factor <factor>]

Vertices are not allowed in thgeom_list for this command. Automatic interval assignment

works by accumulating the distribution of arc lengths of all owned curves, and assigning an
interval size based on a known relative position within that distribution. The user has the option
of specifying a relative factor, between zero and eleven, which specifies a position within that
arc length distribution. The meaning of various points in this range is summarized in Table 5-2.

Table 5-2: Relative size factors.

Factor Interpretation

0 Size of zero

1 Size of smallest curve in entities specified.

10 Size of largest curve in entities specified.

11 1.5 times size of largest curve in entities specified.

The default factor is six.

The user may assign the interval size to be the arc length of the smallest curve contained in the
specified entity or entities using the following command:

{geom_list} Size Smallest curve

Vertices are not allowed in thgeom_list for this command. This command assigns a soft
interval firmness.

118 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

Interval Matching

Each meshing scheme in CUBIT imposes a set of constraints on the intervals assigned to the
curves bounding the entity being meshed. For example, meshing any surface with quadrilaterals
requires that the surface be bounded by an even number of mesh edges. This constrains the
intervals on the bounding curves to sum to an even number. For a collection of connected
surfaces and volumes, these interval constraints must be resolved globally to ensure that each
surface will be meshable with the assigned scheme. The global solution technique implemented
in CUBIT is referred to as interval matching.

When meshing a surface or volume, matching intervals is performed automatically. In some
cases, interval matching needs to be invoked manually, for example when meshing a collection
of volumes, or a collection of surfaces not in a common volume, or when the user has invoked
the control skew command (detailed in the Mesh Quality section). Interval matching can also
be called to check whether the assigned intervals and schemes are compatible.

The command syntax for manually matching intervals is the following:
Match Intervals {geom_list}
Here the entity list can be any mixed collection of groups, bodies, volumes, surfaces and curves.

The interval matcher assigns intervals as close as possible to the user-specified intervals, while
satisfying global interval constraints. The goal is to minimize the relative change in pre-assigned
intervals on all entities. Interval matching only changes curves with interval firmnesstobr

default .

Extra constraints can be added by the user to improve mesh quality locally; in particular, curves
can be constrained to have the same intervals using the command

{curve_list} Interval {Same|Different}

Specifying that curves have the “same” intervals stores them in a set. More curves may be added
to an existing set, and sets merged, by future commands. The current contents of the affected
sets are printed after each command. A curve may be removed from a set by specifying that its
intervals are “different.”

The user may also set interval constraints for groups of curves in relation to other groups of
curves using the command

Curve {curve_list} Interval {Equal_to|Greater_than_equal|Less_than_equal}
[Curve {curve_list}] [<extra_intervals>]

Thus the set of curves specified first will have either the same, the same or greater, or the same
or lesser number of intervals as the second set of curves, if any. If extra intervals are specified,
then those intervals will be added to the right-hand-side of the equation.

The interval assignment algorithm tries to find one good interval solution from among the
possibly infinite set of solutions. However, if many curves are hard-set or already meshed, there
may be no solution. To improve the chances of finding a solution, it is suggested that curves are
soft-set whenever possible. Also, a solution might not exist due to the way the local selections
of corners and sides of mapped surfaces interact globally. If there is no solution, the following
command may help in determining the cause:

Match Intervals {geom_list} [Seed Curve <range>]
[Assign Groups [Only|Infeasible]] [Map|Pave]

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl19

CHAPTER 5 . Mesh Generation

SpecifyingAssign Groups will create groups that contain independent subproblems of the
global problem. Specifyind\ssign Groups Only will group independent subproblems, but

the algorithm will not attempt to solve these subprobleAssign Groups Infeasible will

put each independent subproblem with no solution into specially named groups. Often poor
corner choices and surface meshing schemes will be illuminated this wdgplfor Pave is
specified, then only subproblems involving mapping or paving constraints will be considered.
If a Seed Curve is specified, then only those subproblems containing that curve will be
considered.

Advanced users may also wish to experiment with setting the following, which may change the
interval solution slightly:

Set Match Intervals Rounding {on|off}
Set Match Intervals Fast {on|off}

The user can also constrain the parity of intervals on curves:
{geom_list} Interval {Even | Odd}

If Even is specified, then during subsequent interval setting commands and during interval
assignment, curves aferced to have an even number of intervals. If the current number of
intervals is odd, then it is increased by one to be eve@dH is specified then intervataay be

either even or odd. Unless user specified, curves are odd. Setting intervals to even is useful in
problems where adjoining faces are paved one by one without global interval assignment.

Periodic Intervals

The number of intervals on a periodic surface, such as a cylinder, in the dimension that is not
represented by a curve is usually set implicitly by the surface size. However, periodic intervals
and firmness can be specified explicitly by the following commands:

{geom_list} Periodic Interval <intervals>

{geom_list} Periodic Interval {Default|Soft|Hard}

Relative Intervals

If the user needs fine control over mesh density, then for curvy or slanted sides of swept
geometries, it is often useful to treat curves as if they had a different length when setting interval
sizes. For example, the user may wish to specify that a slanting side curve and a straight side
curve have the same “relative length, despite their true length; see Figure 5-1. These are not

| 0.55

1.0 1.0 1.0
\

0.45 %,

LN y
—_—

Figure 5-1: Useful relative lengths.

120 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

interval matching constraints; interval matching may change intervals so that the user-specified
ratio does not hold exactly. The relative lengths of curves are set with the following command:

{geom_list} Relative Length <size>
The following command is used to assign intervals proportional to these lengths:
{geom_list} Relative Interval <base_interval>

For a curve with relative lengtk, setting a relative interval of producesy intervals, rounded
to the nearest integer.

v Meshing Schemes

Information on specific mesh schemes available in CUBIT is given in this section; the following
sections have important meshing-related information as well, and should be read before
applying any of the mesh schemes described below.

In most cases, meshing a geometry entity in CUBIT consists of three steps:

1) Set the interval number or size for the entity (see “Interval Assignment” on page 117.)

2) Setthe scheme for the object, along with any scheme-specific information, using the scheme
setting commands described below.

3) Mesh the object, using the command:
Mesh {geom_list}

This command will match intervals on the given entity (see “Interval Assignment” on
page 117), then mesh any unmeshed lower order entities, then mesh the given entity. After
meshing is completed, the mesh quality is automatically checked (see “Mesh Quality
Assessment” on page 169), then the mesh is drawn in the graphics window.

Bias, Dualbias

Applies to: Curves
Summary: Meshes a curve with node spacing biased toward one or both curve ends.
Syntax:
{curve_list} Scheme Bias {Factor|First_Delta|Fraction} <double>
[Start Vertex <id>]
{curve_list} Scheme Dualbias {Factor|First_Delta|Fraction} <double>
{curve_list} Scheme Bias Fine Size <double>
{Coarse Size <double>|Factor <double>}
[Start Vertex <id>]
{curve_list} Scheme Dualbias Fine Size <double>

{Coarse Size <double>|Factor <double>}

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl21

CHAPTER 5 . Mesh Generation

Related Commands:

{curve_list} Scheme Curvature

{curve_list} Scheme Stretch

{curve_list} Reverse Bias

Propagate Curve Biasing [surface|volume|body|group <id_list>]
Discussion:

The Bias scheme allows a mesh that is a different density at one vertex of the curve than the
other. The Dualbias scheme allows a mesh that is a different density in the middle of the curve

than at the ends. The lengths of the edges follow a geometric series: the length of an edge is
equal to a constant factor times the length of the preceding edge, except at the middle of a
dualbiased curve. If the factor is greater than one, then, as one moves away from the start vertex,
successive edges get longer.

There are four basic interdependent parameters: the number of intervals, the factor, the starting
size, and the ending size. The user may specify several combinations of these parameters
described below. For scheme Bias, tert vertex may also be specified. If no start vertex is
specified, the curve’s intrinsic start vertex is used as the start vertex; Hint, list the curve.

1) {curve_list} Scheme Dualbias {Factor|First_Delta|Fraction} <double>

This syntax assumes that the correct number of edges will be specifiedibg ar interval
command, and is one of the independent parameters; See “Interval Assignment” on page 117.
If factor is specified, then this is the ratio between successive edges, and the starting and ending
size is whatever makes all of the edge lengths add up to the length of the cuina. Helta

is specified, then this is the absolute length of the first edge, and the factor and ending size are
dependent. Ifraction is specified, then the length of the first edge is that fraction of the total
curve length, and the factor and ending size is dependent. The syrtésfas similar.

2){curve_list} Scheme Dualbias Fine Size <double>
{Coarse Size <double>|Factor <double>}

This syntax assumes that the numbeintérvals is a dependent variable: any prior size or
interval setting will be overridden by this command, and the number of intervals will be hard
set on the curve. Thiine size is the edge length at the ends, or atskert vertex for scheme
bias, and is always independent. Tdwarse size is the size at the middle of the curve, or at
the non-start vertex; the coarse size may be smaller than the fine size ctalse size is
specified, then the factor is dependent. Otherwisefattor is specified and the coarse size is
dependent. The syntax for schebigs is similar.

Scheme stretch is used to keep the number of intervals independent, while speciéjtingr
or boththe start and ending size. The edges will not, in general, follow a geometric series.

Scheme curvature is used to keep the number of intervals independent, while adapting the
edge lengths to local changes in curvature.

A biased curve can be biased towards the opposite end usimgutisebias command. The
curve may be meshed or unmeshed at this point. Reversing the curve bias using this command
is equivalent to setting a bias factor equal to the inverse of the current bias factor.

122 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

Figure 5-2 shows the result of meshing two edges with equal and bias schemes.

Equal Biased

Figure 5-2: Equal and biased curve meshing

Circle

Figure 5-3: Circle Primitive Mesh

Applies to: Surfaces

Summary: Produces a circle-primitive mesh for a surface

Syntax
{surface_list} Scheme Circle [Interval <int> | Delta_r <double>]
[fraction <double>]

Discussion:

TheCircle scheme indicates that the region should be meshed as a circle. A “circle”’consists of
a single bounding curve containing an even number of intervals. Thus, circle can be applied to
circles, ellipses, ovals, and regions with “corners” (e.g. polygons). The bounding curve should
enclose a convex region. Non-planar bounding loops can also be meshed using the circle
primitive provided the surface curvature is not too great. The mesh resembles that obtained via
polar coordinates except that the cells at the “center” are quadrilaterals, not triangles. See Figure

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl23

CHAPTER 5

Copy

Mesh Generation

5-1 for an example of a circle mesh. Radial grading of the mesh may be achieved via the optional
[intervals] input parameter or by specifying the radial didelta_r] of the outermost element.
Fraction has the range 0 fraction < 1 and defaults to 0.3:raction determines the size of

the inner portion of the circle mesh relative to the total radius of the circle.

Applies to: Curves, Surfaces, Volumes
Summary: Copies the mesh from one entity to another
Syntax

{curve_list} Scheme Copy source curve <id_range> [[Source Node <starting
node id> <ending node id>] [Source Percent [<percentage> | auto]]

[Source [combine|SEPARATE]] [Target [combine| SEPARATE]]
[Source Vertex <id_range>] [Target Vertex <id_range>]]

{surface_list} Scheme Copy [Source Surface <id> Source Curve <id>
Target Curve <id> Source Vertex <id> Target Vertex <id>
Source Edge <id> Target Edge <id> Source Node <id> Target Node <id>]
[Nosmoothing]

{volume_list} Scheme Copy [Source Volume <id> Source Surface <id>
Target Surface <id> Source Curve <id> Target Curve <id>
Source Vertex <id> Target Vertex <id>] [Nosmoothing]

Related Commands:
Set Morph Smooth {on | off}
Discussion:

If the user desires to copy the mesh from a surface, volume, or a curve or set of curves that has
already been meshed, the copy mesh scheme can be used. Note that this scheme can be set
before the source entity has been meshed; the source entity will be meshed automatically if
necessary before the mesh is copied to the target entity.

The user has the option of providing orientation data to specify how to orient the source mesh
on the target entity. For example, when copying a curve mesh, the user can specify which vertex
on the source (the source vertex) gets copied to which vertex on the target (the target vertex). If
no orientation data is specified, or if the data is insufficient to completely determine the
orientation on the target entity, the copy algorithm will attempt to determine the remaining
orientation data automatically. If conflicting or inappropriate orientation data is given, the
algorithm attempts to discard enough information to arrive at a proper mesh orientation.

Curve mesh copying has certain options that allow the copying of just a section of the source
curves’ mesh. These options are accessed through the extra keywords given. The percent
options allow the user to specify that a certain percentage of the source mesh be copied--in this
context the ‘auto’ keyword means that the percentage will be calculated based on the ratio of
lengths of the source and target curves. The combine and separate keywords relate to how the
command line is interpreted. If the user wishes to specify a group of target curves that will each
receive the copy of the source mesh, then the defaulfet separate optionis in effect. If,
however, the user wishes the source mesh to be spread out along the range of target curves, then
thetarget combineoption must be used. The source curves are treated in a similar fashion.

124 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

Volume mesh copying depends on the surface copying scheme. Because of this, the target
volume must not have any of its surfaces meshed already.

Because of how the copying algorithm works, the target mesh might not be an exact copy of the
source mesh. This happens because of the effects of smoothing. If an exact copy is required,
there are two possible solutions. The first option is useful when the source and target surfaces
or volumes are exact matches. If this criterion is met, the user may specify the Nosmoothing
option. That will disable any smoothing of the mesh on the target surface and thereby providing
an extremely exact copy of the mesh. The second option is useful if the source and target
surfaces are not identical. In this case the user may set the morph smoothing flag on, which will
activate a special smoother that will match up the meshes as closely as possible.

Curvature

Applies to: Curves
Summary: Mesh a curve with interval sizes adapted to local curvature.
Syntax:

curve <id_range> scheme curvature <double>
Discussion:

The value of <double> controls the degree of adaption. If zero, the resulting mesh will have
nearly equal intervals. If greater than zero, the smallest intervals will correspond to the
locations of largest curvature. If less than zero, the largest intervals will correspond to the
locations of largest curvature. The default value<dbuble> is zero. Straight lines and
circular arcs will produce meshes with near-equal intervals. The method for generating this
mesh is iterative and may sometimes not converge. If the method does not converge, either the
<double> is too large (over-adaption) or the number of intervals is too small. Currently, the
scheme does not work on periodic curves.

Dice
Applies to: Curves, Surfaces, Volumes
Summary: Refinement algorithm for refining edges, quads and hexes into smaller ones.
Syntax:
{geom_list} Scheme Dice
Related Commands:
{geom_list} Initialize Dicer
{geom_list} DicerSheet Interval <interval>
DicerSheet <id> interval <interval>
DicerSheet Default Interval <interval>
Replace Mesh {geom_list}
Set Node Constraint {on|off}
Delete Fine Mesh {geom_list} [Propagate]

Discussion:

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl25

CHAPTER 5

Mesh Generation

It is occasionally more convenient to mesh a volume in two stages, first with a coarse mesh and
then converting the coarse mesh to a fine mesh. The method used to convert a coarse hex mesh
to a fine hex mesh is known as hex dicing.

Hex dicing replaces each coarse element with a grid of smaller elements. The grid is generated
by cutting the element any number of times along each of its three primary axes. The nhumber
of fine elements in the grid depends on the number of cuts in each direction, and is known as the
refinement interval. For example, a hex with a refinement interval of 2 in each direction will be
replaced by a grid of 8 smaller elements. A simple example is shown in Figure 5-4.

;S

Figure 5-4: Simple Dicing Example

Dicing may also be performed on a quad mesh. The result is a grid of quads replacing each
coarse quad element.

In order for the resulting fine mesh to be conformal, groups of coarse mesh edges must have the
same refinement interval. Each group of dependent edges is known as a dicer sheet. Dicer sheets
often include edges from several surfaces and volumes, so dependencies may propagate
throughout the mesh. Dicer sheets are maintained automatically and enforce refinement interval
dependencies.

Hex dicing is performed in 4 steps:
1) Initialize the dicer

Before dicing may be carried out, the dicer must first be initialized. This will create the
necessary internal data needed to enforce constraints and correctly generate and store the fine
mesh. To initialize the dicer for a given entity, useltfigalize Dicer command

All appropriate internal data will be generated. If there are dependencies between any of the
specified entities, or any entity for which the dicer has already been initialized, those
dependencies will automatically be reflected in the internal data with dicer sheets.

2) Setrefinementintervals

After the dicer has been initialized, refinement intervals should be set. This will determine the
number of fine edges replacing each coarse edge in a given dicer sheet, ultimately determining
the number of fine elements that will replace each coarse element. The refinement interval must

126 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

be a positive integer, 1 or greater. A refinement interval of 1 will leave the coarse edges
essentially unchanged, replacing 1 coarse edge with 1 fine edge.

Refinement intervals may be set on a geometric entity, on individual dicer sheets, or using a
default value for all dicer sheets, using the commands:

{geom_list} DicerSheet Interval <interval>
DicerSheet <id> interval <interval>
DicerSheet Default Interval <interval>
The default dicer sheet interval is two.
3) Perform the dicing

Initializing the dicer for an entity will set the mesh scheme for that entity to Dice. Once the
scheme has been set to Dice, the coarse mesh can be used to create the fine mesh using the
command

Mesh {geom_list}

The fine mesh will be generated and will exist in memory, but at this point will not be applied
to the entity that was diced.

4) Replace the coarse mesh with the fine mesh

Once the fine mesh exists in memory, you may replace the coarse mesh with the fine mesh with
the command

Replace Mesh {geom_list}

This command works only with surfaces and volumes. Each coarse element will be replaced
with its grid of fine elements. As a result, the mesh on any child entities will also be replaced.
In other words, replacing the mesh of a volume will also replace the mesh on each of that
volume’s surfaces and curves.

As a coarse mesh is replaced, any coarse elements that are still needed by another portion of the
mesh will not be destroyed. For example, assume that two volumes have been merged and
shared a surface. If both volumes are meshed, and the mesh on one volume is then replaced, the
shared coarse surface mesh will still exist because it is needed by the other volume. At this point,
the surface mesh is in an ambiguous state, simultaneously containing coarse and fine elements.
If the second volume is then diced and its mesh is replaced, the coarse mesh on the shared
surface will then be deleted and the fine mesh will be conformal between the two volumes.

The Simplified Dicer Commands

The four step process normally used to dice a mesh may be simplified using commands very
similar to those used for other meshing schemes. To use the simplified interface, follow these
steps:

1) Set the mesh scheme to Dice for each entity to be diced, using a command ¥althvees 1
Scheme Dice .

2) Setthe interval on the entity, using a command sudfoasne 1 Interval 3 . This will set
the refinementinterval for the specified volumes.

3) Mesh the entity, using a command suctviesh Volume 1 .
4) Replace the mesh, using a command sudkegdace Mesh Volume 1 .

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl27

CHAPTER 5 . Mesh Generation

While the simplified interface still require four steps, the commands are familiar, similar to
those used for other meshing schemes. The simplified commands are automatically converted
to the appropriate dicing commands when the situation requires it.

Additional Dicing Commands

Several utilities have been developed to assist the user during the refinement process.

e Constraining Nodes to Geometry

The user can control whether refinement nodes of surface and curve meshes get moved to the
geometry, or whether their positions remain as a straight-line interpolation between coarse
nodes, via the following command:

Set Node Constraint {on|off}

If Node Constraint is on, which is the default, then nodes are constrained to lie on the
geometry.

« Deleting a Fine Mesh

The fine nodes generated by the Dicer may be deleted using the command
Delete Fine Mesh {geom_list} [Propagate]

This command only works before using tReplace Mesh command. Any fine mesh entities

that rely on the deleted fine nodes are also deleted. For example, if the fine nodes on a surface
are deleted, the fine mesh of any attached volume is deleted along with the nodes on the surface.
If the optionalPropagate keyword is used, the fine mesh will be deleted from any child entities

as well.

e Interaction with Dicer Sheets

Dicer sheets can be drawn, picked, highlighted, and listed, like other entities in the CUBIT
model.

Equal

Applies to: Curves
Summary: Meshes a curve with equally-spaced nodes
Syntax:
{curve_list} scheme Equal
Discussion:

See “Interval Assignment” on page 117 for a description of how to set the number of nodes or
the node spacing on a curve.

HexToVoid

Applies to: Volumes

Summary: Meshes a volume building hexes from the exterior surfaces of the volume until

hexes can no longer be inserted. In general this scheme will not produce a complete (closed)
6 mesh for arbitrary volumes.

128 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

Syntax:
volume <volume_id_range> scheme hextovoid
Related Commands:
mesh volume <volume_id_range> [hexes <number_hexes>]
mesh volume <volume_id_range> [layers <number_layers>]
Discussion:

This algorithm is related to plastering, except that the exterior mesh remains fixed. In the general
case, this will result in a partial all-hex mesh, and one or more unmeshed interior void regions.
The algorithm currently successfully creates a partial mesh for most geometries. HexToVoid is
most often used as part of the HexTet meshing algorithm discussed below.

A partial mesh can be created instead of meshing the complete geometry. The number of hex
elements or the number of completed layers inward can be specified at the command line.

HexTet

Applies to: Volumes

Summary: Meshes a volume using thdexToVoid scheme until hex meshing terminates,
finishes remaining void with scherfietMesh.

Syntax:

volume <volume_id_range> scheme hextet
Related Commands:

Set hextet transition_type { two_triangle | four_triangle | pyramid }
Discussion:

This algorithm combines the HexToVoid and TetMesh schemes to create a fully meshed, mixed-
element mesh. The HexToVoid algorithm is first invoked to create as many hexes as possible in
the volume, working inward from the boundaries. The quadrilateral boundary is then converted
to a triangular boundary, and the remaining volume is filled with tetrahedra.

There are three methods currently supported to convert the quadrilateral void boundary to
triangles. The two-triangle scheme subdivides each quadrilateral along its shortest diagonal,
producing two boundary triangles. The four-triangle scheme inserts a center point on the
guadrilateral and divides into four triangles. The pyramid scheme inserts a layer of pyramid

elements on top of the quadrilaterals, resulting in a fully-conformal mesh.

Hole

Applies to: Annular Surfaces

Summary: Useful on annular surfaces to produce a “polar coordinates” type mesh (with the
singulaity removed).

Syntax:

Surface <surface_id_range> Scheme Hole [rad_intervals <intervals>]
[bias <double>] [pair node <loop node-id> with node <loop node-id>]

Discussion:

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl29

CHAPTER 5

Mesh Generation

A polar coordinate-like mesh with the singularity removed is produced with this scheme. The
azimuthal coordinate lines will be of constant radius (unlike scheme map) The number of
intervals in the azimuthal direction is controlled by setting the number of intervals on the inner
and outer bounding loops of the surface (the number of intervals must be the same on each loop).
The number of intervals in the radial direction is controlled by the user impdt,intervals

(default is one). A bias may be put on the mesh in the radial direction via the input parameter
bias. A bias of 1 gives a uniform grading (default), a bias less than one gives smaller radial
intervals near the inner loop, while a bias greater than one gives smaller radial intervals near the
outer loop. The correspondance between mesh nodes on the inner and outer boundaries is
controlled with thepair node <loop node-id> with node <loop node-id> construct. One

id on the inner loop and one id on the outer loop should be given to connect the two nodes by a
radial mesh line. If this option is not exercised one risks sub-optimal node pairings, with
possible negative Jacobians as the result. To use this option one must first mesh the inner and
outer curve looops and determine the mesh node ids.

Figure 5-5: Example of Mesh Scheme Hole

Mapping

Applies to: Surfaces, Volumes
Summary: Meshes a surface/volume with a structured mesh of quadrilaterals/hexahedra.
Syntax:
{geom_list} Scheme Map
Discussion:

A structured mesh is defined as one where each interior node on a surface/volume is connected
to 4/6 other nodes. Mappable surfaces contain four logical sides and four logical corners of the
map; each side can be composed of one or several geometric curves. Similarly, mappable

130 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

volumes have six logical sides and eight logical corners; each side can consist of one or several
geometric surfaces. For example, in Figure 5-6, the logical corners selected by the algorithm are

TN
TR
R NI

punni! AN
uEmSEEEININY
AP

Logical
Corners

SurfaceA

Logical
Corners

]]
HHHH
i
....
S

o
H
iy

L]

[
q

Figure 5-6: Scheme Map Logical Properties

indicated by arrows. Between these vertices the logical sides are defined; these sides are
described in Table 5-3. Interval divisions on opposite sides of the logical rectangle are matched

Table 5-3: Listing of logical sides

Logical Side Curve Groups
Side 1 Curve 1
Side 2 Curve 2
Side 3 Curve 3, curve 4, curve 5
Side 4 Curve 6

to produce the mesh shown in the right portion of Figure 5-6 (i.e. The number of intervals on
logical side 1 is equated to the number of intervals on logical side 3). The process is similar for
volume mapping except that a logical hexahedron is formed from eight vertices. Note that the
corners for both surface and volume mapping can be placed on curves rather than vertices; this
allows mapping surfaces and volumes with less than four and eight vertices, respectively. For
example, the mapped quarter cylinder shown in Figure 5-7 has only five surfaces.

The choice of where to put the four or eight corners of a mapped mesh is performed
automatically, but in some cases produces undesirable results. The user has the option of
providing guidance on where to put these corners by specifying surface vertex types; see
“Surface Vertex Types” on page 160 for a discussion of this topic. A related discussion on the
constraints of the mapping and submapping surface schemes is presented to provide the user
with background information about which geometries are most appropriate for these meshing
schemes (See “Surface Vertex Types” on page 160).

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl31

CHAPTER 5

Mirror

Mesh Generation

Figure 5-7: Volume mapping of a 5-surfaced volume

In some cases, namely for surfaces or volumes whose boundaries are concave, TFI can produce
inverted meshes. In these cases, the mapped meshes can be smoothed to improve quality and
yield a non-inverted mesh.

Applies to: Surfaces
Summary: Mirrors the mesh from one surface to another
Syntax:

{surface_list} scheme Mirror [Source Surface <id> Source Curve <id>
Target Curve <id> Source Vertex <id> Target Vertex <id>
Source Edge <id> Target Edge <id> Source Node <id> Target Node <id>]
[Nosmoothing]

Discussion:

The mirror scheme is very similar to theopy scheme and its users should refer to the

description of the options under that heading. In order to understand what is changed, a
discussion of the copy command is in order. Depending on what the user enters for the copy
scheme, the resulting mesh might be oriented one of two ways. For example, if the user entered:

Surface 1 scheme copy source surface 2 source vertex 5 target vertex 1

then the algorithm would match vertex 1 with vertex 5, but then would have to make a guess
about how to match the curves. Lacking other pertinent data, the match will be a direct match,
as is shown in Figure 5-8.

132 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

This default matching can be changed by specifying more information for matching, or the user
can specify scheme mirror. The mirror scheme sets up the copying information in such a way as
to reverse the default orientation of the target mesh, as is shown in Figure 5-8 (right).

1 ? 1 2

Figure 5-8: Surface 1 copied/mirrored onto surface 2.

Pave

Applies to: Surfaces
Summary: Automatically meshes a surface with an unstructured quadrilateral mesh.
Syntax:
{surface_list} Scheme Pave

Related Commands:

[set] Paver Diagonal Scale <factor (Default = 0.9)>

[set] Paver Grid Cell <factor (Default = 2.5)>

[set] Paver LinearSizing {Off | ON}

[set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

Discussion:

Paving (see reference [1]) allows the meshing of an arbitrary three-dimensional
surface with quadirlateral elements. The paver supports interior holes,

arbitrary boundaries, hard lines, and zero-width cracks. It also allows for

easy transitions between dissimilar sizes of elements and element size
variations based on sizing functions. Figure 5-9 shows the same surface
meshed with mapping (left) and paving (right) schemes using the same

discretization of the boundary curves.

When meshing a surface geometry with paving, clean-up and smoothing techniques

are automatically applied to the paved mesh. These methods improve the

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl33

CHAPTER 5 . Mesh Generation

regularity and quality of the surface mesh. By default the paving method uses
its own smoothing methods that are not directly callable from CUBIT. Using
one of CUBIT’s callable smoothing methods in place of the default method
will sometimes improve mesh quality, depending on the surface geometry and
specifice mesh characteristics. If the paver produces poor element quality,

switching the smoothing scheme may help. This is done by the command:

[set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

When the "Smooth Scheme" is selected, the smoothing scheme specified for the
surface will be used in place of the paver's smoother. See

“Mesh Smoothing” on page 161 for more information about the callable smoothing
schemes in CUBIT.

The smoothers flatten elements, such as inserted wedges, that have two edges
on the active mesh front. In meshes where this "corner” is a real corner,
flatten the element may give an unacceptable mesh. The following command

controls how much the diagonal of such an element is able to shrink.
[set] Paver Diagonal Scale <factor (Default = 0.9)>

The range of for the scale factor is 0.5 to 1.0. A scale factor of 1.0 will

force the element to be a parallelagram as long as it is on the mesh front. A
value of 0.5 will allow the diagonal to be half its calculated lenght. The
element may became triangular in shape with the two sides on the mesh front

being colinear.

The paver divides the bounding box of a surface into a number of cells based
on the average length of an element. It uses these cells to speed intersection
checking of new element edges with the existing mesh. If both very long and
very short edges fall in the same area, it is possible that a long edge spans
the search region as is excluded from the intersection check when it does
intersect the new element. The following command allows the user to adjust

the size of the grid cells.

134 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

[set] Paver Grid Cell <factor (Default = 2.5)>

The grid cell factor is a multiplier applied to the average element size. This
gives the grid cell size. The surface’s bounding box is divided by this cell
size to determine the number of cells in each direction. A larger cell size
means each cell contains more nodes and edges. A smaller cell size means
each celll has fewer nodes and edges. A larger cell size forces the
intersection algorithm to check more potential intersections, which results

in long paver times. A smaller cell size gives the intersection algorithm

few edges to check (faster execution) but may result in missed intersections
where the ratio of long to short element edges is great. Increase this value

if the paver is missing intersections of elements.

The paving algorithm will automatically select a "linear" sizing function if
the ratio the largest element to the smallest is greater than 6.0 and no
other sizing function is specified for the surface. This is usually

desireable. When it is not, the user can change this behavior with the command:
[set] Paver LinearSizing {Off | ON}
Setting paver linear sizing to "off" will keep the default behavior. The

size of the element will be based on the side(s) of the element on the mesh

front. For a discussion of sizing functions see Appendix E.

Figure 5-9: Map (left) and Paved (right) Surface Meshes

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl35

CHAPTER 5 . Mesh Generation

Pentagon Primitive

Applies to: Surfaces

Summary: Automatically meshes a surface with primitive for 5-sided regions using a block-
structured quadrilateral mesh.

Syntax:
{surface_list} Scheme Pentagon

Related Commands:none

A new meshing primitive for 5-sided regions has been developed. This is similar to the triangle scheme, except it
uses 5 sides.

The pentagon scheme indicates the the region should be meshed as a pentagon. The scheme works best if the shape
has 5 well-defined corners; however shapes with more corners can be meshed. The algorithm requires that there be at
least 10 intervals (2 per side) specified on the curves representing the perimiter of the surface. In addition, the sum of
the intervals on any three connected sides must be at least two greater than the sum of the intervals on the remaining
two sides. The figure below shows several pentagon meshes.

136 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

Plastering

Applies to: Volumes
Summary: Research algorithm for generating all-hexahedral meshes for arbitrary 3D volumes

Syntax:

{volume_list} Scheme Plaster
Related Commands:
Mesh {volume_list} [hexes <number_hexes>] [layers <number_layers>]

Discussion:

Plastering uses the discretized surface and projects elements into the interior of the volume. This
continues until the volume fills, with adjustments made to the exterior surface mesh as deemed
necessary. This algorithm is currently under development and not suggested for use although it
may be tested if desired. It should currently perform well for blocky structures where the surface
mesh will form a valid boundary for an interior hex mesh. Some examples of these structures
are shown in Figure 5-10. These structures allow very straightforward hex element connectivity

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl37

CHAPTER 5 . Mesh Generation

and do not contain any irregular nodes (nodes that are shared by other than four element edges
in a given layer).

4y

DN T N R

)
)

)
Ly

X

OOCS

[T][]/]/
[/)]]]

Figure 5-10: Plastering Examples

A partial mesh can be created instead of meshing the complete geometry. The number of hex
elements or the number of completed layers inward can be specified at the command line when
giving the mesh command by using the following syntax:

mesh {volume_list} [hexes <number_hexes>] [layers <number_layers>]

QTri

Applies to: Surfaces

Summary: Meshes surfaces with the paving algorithm, then converts the quadrilateral elements
into triangles.

Syntax
{surface_list} Scheme QTri
QTri {surface_list}
Related Commands:
Set Node Constraint {On|Off}
Discussion

QTri is used to mesh surfaces with triangular elements. It uses the quadrilateral paving
algorithm first. The quads generated by paving are then split along the diagonal to produce
triangles. This command is used as a backup for the TriMesh command, when it fails or can’t
be used.

The first command listed above sets the meshing scheme on a surface to QTri. The second form
sets the scheme and generates the mesh all in one step.

138 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

Using QTri on a surface that has already been meshed with quadrilateral elements will split the
existing elements into triangles. This feature allows you to use a meshing scheme other than
paving to generate the initial quads.

Sphere

Applies to: Volumes topologically equivalent to a sphere and having one surface.
Summary: Generates a radially-graded hex mesh on a spherical volume.
Syntax
Volume <volume_id_range> Scheme Sphere [graded_interval <int>]
[az_interval <int>] [bias <val>] [fraction <val>]
Discussion
This scheme generates a radially-graded mesh on a spherical volume having a single bounding
surface. The mesh is a straightforward generalization of scheme Circle for surfaces. The number
of azimuthal intervals around the equator is controlled byathénterval input parameter. The
number of radial intervals in the outer portion of the sphere is controlled by the
graded_interval input parameter. Azimuthal mesh lines in the outer portion of the sphere

have constant radius. The inner portion of the volume mesh forms a cubbiahparameter
controls the amount of radial grading in the outer portion of the mesh (default=1 gives a uniform

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl39

CHAPTER 5

Stretch

Mesh Generation

mesh). Theraction parameter (between 0 and 1) determines what fraction of the sphere is
occupied by the inner cube.

Figure 5-11: Example of Mesh Scheme Sphere A

Applies to: Curves
Summary: Permits user to specify the exact size of the first and/or last edges on a curve.
Syntax

Curve <id_range> scheme stretch
[first_size <double> [last_size <double> | stretch_factor <double>]]
[start_vertex <int>]

Related Commands:
{curve_list} Scheme Bias
{curve_list} Scheme Dualbias
Discussion

This scheme allows the user to specify the exact length of the first and/or last edge on a curve,
independent of the number of intervals. Intermediate edge lengths will vary smoothly between
these input values, fitting in the required number of intervals. Meshes that are denser or finer in

140 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

the middle of the curve than at either end may be created by increasing or decreasing the number
of intervals. Unlike scheme bias and dualbias, edges lengths will not, in general, follow a
geometric series. Reasonable size parameters should be input: e.g., the sizes must be less than
the total length of the curve. last_size orstretch_factor is input,first_size must also be

input. Bothlast_size andstretch_factor may not be input. The Stretch scheme currently

does not work on periodic curves. The number of intervals on the curve are specified normally
with a size or interval command.

Submap

Applies to: Surfaces, Volumes
Summary: Produces a structured mesh for surfaces/volumes with more than 4/6 logical sides
Syntax
{geom_list} Scheme Submap
Related Commands:
{geom_list} SubMap Smooth <on|off>
Discussion:

Submapping is a meshing tool based on the surface mapping capability discussed previously,
and is suited for mesh generation on surfaces which can be decomposed into mappable
subsurfaces. This algorithm uses a decomposition method to break the surface into simple
mappable regions. Submapping is not limited by the number of logical sides in the geometry or
by the number of edges. The submap tool, however is best suited for surfaces and volumes that
are fairly blocky or that contain interior angles that are close to multiples of 90 degrees.

An example of a volume and its surfaces meshed with submapping is shown in Figure 5-12.

%
o

%

==

=
=S

==

o>

S

SRS
=

=

==

2
S
",

=

=

=8
%
Yz

54
P
0y
o
L7

L7

s
e,
wos
oy
7HL
L7

AR
TN
"“n“\"\‘

L7

7717
77
7Y

/7
717

2

27
(7

77

—_—
T
Al

Wi
I:l'
i

S
Q)
=

=

1

S

=

=

S

=
i
7]
aaniygstecte
11 2=

_—

=

~

N
N

o
5
N
S
S
n
7t
"l
iy

i
i

bl S
Nue, SN
N

!

FERRRRRSSS
Figure 5-12: Quadrilateral and hexahedral meshes generated by submapping

Like the mapping scheme, submapping uses vertex types to determine where to put the corners
of the mapped mesh (see “Surface Vertex Types” on page 160). For surface submapping, curves
on the surface are traversed and grouped itdgital sides by a classification of the curves

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudli41

CHAPTER 5 . Mesh Generation

position in a local “i-j” coordinate system. Volume submapping uses the logical sides for the
bounding surfaces and the vertex types to construct a logical “i-j-k” coordinate system, which
is used to construct the logical sides of the volume. For surface and volume submapping, the
sides are used to formulate the interval constraints for the surface or volume.

Figure 5-13 shows an example of this logical classification technique, where the edges on the

\
\
\
!
\
\
gecee)

R Smme Wt

ST ST,

AN
v S

““

S S S

N

NS

L
W WA WA WAV
:““““‘

s

'.l"'.
THH
T [

]
[
[1]
117

/]
i

11
o
iy
|
N
4

/] 1]
[/ 11

ey
I

1]

11771

'l'l'l'll'
11711

Figure 5-13: Scheme&SubmapLogical Properties

front surface have been classified in the i-j coordinate system; the figure also shows the
submapped mesh for that volume.

After submapping has subdivided the surface and applied the mapped meshing technique
mentioned above, the mesh is smoothed to improve mesh dqu'mynetimes smoothing can
decrease the quality of the mesh; in this case the following command can turn off the automatic
smoothing before meshing:

{geom_list} SubMap Smooth <on|off>

Surface submapping also has the ability to mesh periodic surfaces such as cylinders; an example
of a periodic surface meshed with submapping is shown in Figure 5-14. The requirement for
meshing these surfaces is that the top and bottom of the cylinder must have matching intervals.
For periodic surfaces, there are no curves connecting the top and bottom of the cylinder; setting
intervals in this direction on the surface can be done by setting the periodic intervals for that
surface (see “Interval Assignment” on page 117). No special commands need to be given to
submap a periodic surface, the algorithm will automatically detect this. Currently, periodic
surfaces with interior holes anet supported.

Volume submapping is limited to geometries that meet the following two criteria:

1) the bounding surfaces have been meshed with surface submapping or mapping, and
2) three, five, and six valent nodes occur only at junctions where surfaces meet.

1. Because the decomposition performed by submapping is mesh based, no geometry is created in the process and the
resulting interior mesh can be smoothed.

142 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

Figure 5-14: Periodic Surface Meshing with Submapping
Sweep

Applies to: Volumes
Summary: Produces an extruded hexahedral mesh for 2.5D volumes.
Syntax
{volume_list} Scheme Sweep [Source [Surface] <id>] [Target [Surface] <id>]
Related Commands:
{volume_list} Sweep Smooth <on|offlwinslow>
Discussion:

Thesweep algorithm can sweep general 2.5D geometries and can also do pure translation or
rotations. Figure 5-15 displays swept meshes involving mapped and paved source surfaces. The

Source
Surface

Source
Surface

Target

Surface
Surface

Figure 5-15: Sweep Volume Meshing

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl43

CHAPTER 5

Linking Surfaces

. Mesh Generation

sweep algorithm can also handle multiple surfaces linking the source surface and the target
surfaces. An example of this is shown in Figure 5-16.

\

J
!

(W)

|

777
I
77/

=

[/
—/

—

T

[/

7777
7
777

-~~~
[T T F7

77

Z
T

/7

[/

/ /[

[/
[/

Yo
7/

7/

L.
7
77

[/
2L

(/
LA
=
— —
=

<

Figure 5-16: Multiple Surface Sweep Volume Meshing

If the source and target surfaces are not specified, then CUBIT attempts to automatically select
them. Setting a sweep scheme on a volume automatically selects schemes for the surfaces of the
volume. Also, CUBIT automatically sets curve and vertex types in an attempt to make the mesh
of the linking surfaces lead from a source surface to a target surface. These automatic selections
occasionally fail, in which case the user must manually select the source/target surfaces, some
source/target or linking surface meshing schemes, or some curve and vertex types. After making
some of these changes, the user should again attempt to set the volume scheme to sweep, etc.

Occasionally the user must also adjust intervals along curves: in addition to the usual surface
interval matching requirements, for a given pair of source/target surfaces, there must be the
same number of hexahedral layers between them regardless of the path taken. This constrains
the number of edges along curves of linking surfaces. For example, in Figure 5-15 right, the
number of intervals through the holes must be the same as along the outer shell.

In most cases swept meshes do not require smoothing, however in some cases smoothing is
required in each layer of the sweep. In practice, volumes are swept without layer smoothing, and
if the resulting mesh quality is poor, the user should turn on layer smoothing. The following
command enables layer-smoothing:

{volume_list} Sweep Smooth <on|offlwinslow>

The default setting for layer smoothingaff. This means that no smoothing will be applied to

the layer meshes. If layer smoothing is turned on, a weighted winslow smooth is performed
which smooths the layer and preserves biasing of the source mesh in so far as possible. A third
option is to set sweep smooth to winslow, which results in unweighted winslow smoothing
which does not preserve biasing but sometimes result in better mesh quality.

Some helpful hints in using sweep

1) Sweep runs faster if “sweep smooth” is off. If the geometry/surface mesh permits translation,
rotation, or scaling then no smoothing should be needed.

144 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

2) The source and linking surfaces of the volume will be automatically meshed if the user has
not already meshed them prior to meshing the volume with sweispmportant to have high
guality meshes on the linking surfaces that are synchronized with one another to that sweep
can succeed-or example, if the geometry suggests translation as the appropriate technique, a
translated mesh will still not result from sweep unless the meshes on the volume surfaces are
setup accordingly. If there are bad quadrilaterals on the surface meshes, sweep automatically
aborts.

3) The target may be meshed by the user or that task may be left to sweep. If the target surface is
meshed prior to invoking sweep, then the target mesh must be topologically equivalent to the
set of source surface meshes.

4) Biasing of the curve meshes in the direction of the sweep is preserved by the sweep. Biasing
of the source mesh boundary is not preserved under a sweep. To accomplish the latter, the
user must bias the target surface boundary.

5) The most common error message generated by sweep reads “Target partially reached. Check
intervals on Linking Surfaces.” The error-trap that provokes this message is quite general and
may occur for a number of reasons, not necessarily the reason given. One of the most frequent
causes for this message is a geometry with a thru-hole with the linking surfaces having a
different number of intervals on the inside vs. the outside of the volume.

6) If either or both the source and/or target surfaces are omitted from the scheme setting
command, CUBIT will determine source and target surfaces (see “Automatic Scheme
Selection” on page 157). Sweeping can be further automated using the “sweep groups”
command.

7) Limitations: Not all geometries are sweepable. Even some that appear sweepable may not
be, depending on the linking surface meshes. Highly curved source and target surfaces may
not be meshable with the current sweep algorithm. Multiple target surfaces are currently not
allowed.

Many-to-Many, or Multisweeping

Applies to: Sweepable volumes with multiple target surfaces

Summary: Extends the sweeping algorithms to include volumes with more than one target
surface.

Syntax:
Related Commands:

[set] multisweep smoothing {ON|off}
Discussion:

New to CUBIT version 4.0 is the ability to mesh volumes with multiple target surfaces. The new
multisweep algorithm works by recognizing possible mesh and topology conflicts between the
source and target surfaces and working to resolve these conflicts through the use of the virtual
geometry capabililes in CUBIT. Figure 5-17 shows some examples of volumes which have been
meshed with the multisweep algorithm.

The multisweep algorithm is simply an addition to the regular sweeping algorithms, the
multisweep capabilities are accessed by simply specifying scheme sweep and placing multiple
target surfaces in the target list. Also, the autoscheme selection algorithm may assign some
volumes to be multiswept.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl45

CHAPTER 5 . Mesh Generation

g

£
-.'

Ny
[
)
=57
i
-'
=1L

L]
|]
3

iy
..=--

T

IIL)T‘\I Kﬂ'\r :
e
=

I
Il
P I

!

P
F

T
N

)
GLL AN
ELZTAND
==

e
=k

Figure 5-17: Multiswept volume mesh

When setting sizes on volumes which are to be multiswept, it is important to understand that
any mesh placed on the volume by a sweeping algorithm is simply a projection of the mesh
placed on the source surfaces. It is, therefore, important that similar sizes be placed on both the

source and target surfaces to prevent any resulting conflicts when the meshes are aligned during
multisweeping and the actual volume meshing.

Because the multisweep algorithm may alter some surface geometry on the volume, it is
generally a good idea to attempt to mesh the multisweep volumes first before meshing any other
volumes. Also note that this geometry modification may also require some additional scheme
selection and interval matching on adjoining volumes.

TetMesh, TetINRIA, TetMSC

Applies to: Volumes

Summary: Automatically meshes a volume with an unstructured tetrahedral mesh.
Syntax:

{volume_list} Scheme {TetMesh | TetINRIA | TetMSC}
Related Commands:

[set] TriMesher {AMG | MSC | INRIA | Simulog}

Discussion:

The "TetMesh" scheme fills and arbitrary three-dimensional volume with

tetrahedral elements. The surfaces are first trianglulated with either one

146 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

of the triangle schemes (TriMesh, TriAdvance, TriMSC) or a qualrilateral
scheme with the qualrilaterals split in two triangles. One or two algorithms

are available for generating the tetrahedral mesh.

1. The Simulog/INRIA tetrahedron mesher is included in CUBIT. This is a
robust and fast tetrahedron mesher developed in France at INRIA and
distributed by Simulog. Figure 5-18 shows a part filled with tetrahedra by
this algorithm. You can force this scheme for a volume by giving the

command:
{volume_list} Scheme TetINRIA

2. The MSC/AMG Aries tetrahedron mesher may be available. This is an
optional component and therefore, not available in all CUBIT installations.

You can force this scheme for a volume by giving the command:
{volume_list} Scheme TetMSC

The default tetrahedron meshing scheme is "TetINRIA" since it is included
in all versions of CUBIT. The default algorithm may be changed with the

command:
[set] TetMesher {AMG | MSC | INRIA | Simulog}

Setting the tetrahedron mesher to "AMG" or "MSC" will select the MSC/AMG Aries
tetrahedron mesher as the default algorithm. This is optional software and
requires a separate licence, which may not be available. Setting the

tetrahedron mesher to "INRIA" or "Simulog" selects that algorithm as the

default. All volumes with scheme "TetMesh" will use the Simulog/INRIA

algorithm to generate the tetrahedral volume mesh from that point foreward.

Tetrahedron

Applies to: Volumes

Summary: Meshes a four “sided” object with hexahedral elements using the standard
tetrahedron primitive.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl47

148

CHAPTER 5 .

Mesh Generation

AR
WY
W
W V
\ N
ANV RR D
AN AV
RN TR DR R NN 7 Y% %%
R NN R RS AA ARSI
dll\\“pil\\w\\\m\y\\é\l“HE ARSI
N NN R A A AATSIRAN ALK
A NN AR ERIONRT
AN RN AT AL RRDD
REERRR AN \‘i“n' NN
A BV A ASRDORIRS
NN AR RN A AR IO
RN AAKTR 2NN 1’#)4!«5:,,
AR A
WK 225 ARSI
QRXIXIKL

2

Figure 5-18: Tetrahedral mesh generated with scheme TetMesh
Syntax:

{volume_list} Scheme Tetrahedron [combine surface <range>] [combine

surface <range>] [combine surface <range>] [combine surface <range>]
Discussion:

Thetetrahedron scheme is used to hex mesh volumes with a standard primitive. The primitive
assumes that each of the four surfaces have been meshed witiatigle meshing scheme. If

more than four surfaces form the tetrahedron geometry, the logical sides can be combined
through thecombine option.

THex

Applies to: Volumes

Summary: Converts tetrahedral elements into hexahedral elements
Syntax:

THex {volume_list}
Related Commands:

Set Node Constraint {On|Off}
Discussion:

CUBIT Version 4.0 Reference Manual

Document Version 4/18/00

CHAPTER 5 . Mesh Generation

Figure 5-19: Sphere octant hex meshed with scheme Tetrahedron, surfaces meshed using
scheme Triangle
The THex command splits each tetrahedral element in a volume into four hexahedral elements,

as shown in Figure 5-20. This is done by splitting each edge and face at its midpoint, and then
forming connections to the center of the tet.

Note: When THexing merged volumes, all of the volumes must be THexed at the same time,
in a single command. Otherwise, meshes on shared surfaces will be invalid.

Figure 5-20: Conversion of a tetrahedron to four hexahedra, as performed by the THex
algorithm.

An example of the THex algorithm is shown in Figure 5-21.

Transition

Applies to: Surfaces
Summary: Produces a specified transition mesh for specific situations
Syntax:

{surface_list} Scheme Transition {Triangle | Half_circle | Three_to_one |
Two_to_one | Convex_corner | Four_to_two} [Source Curve <id>]
[Source Vertex <id>]

Discussion:

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl49

CHAPTER 5

Mesh Generation

Figure 5-21: A cylinder before and after the THex algorithm is applied.

Thetransition scheme supplies a set of transition primitives which serve to transition a mesh
from one density to another across a given surface. The six transition sub-types are
demonstrated here.

Scheme Transition Triangle (see Figure 5-22) creates four quads in a triangle that has sides of
three, two, and one intervals.

Scheme Transition Half_circle (see Figure 5-22) creates three intervals on the flat and three on
the curved part of the half-circle, then creates four quads in the surface.

Scheme Transition Three_to_one (see Figure 5-23) creates four quads on a rectangular surface
that has intervals of three, one, one, and one on its sides.

Scheme Transition Two_to_one (see Figure 5-23) creates three quads on a rectangular surface
that has intervals of two, two, one and one on its sides

Scheme Transition Convex_corner (see Figure 5-24) takes a six-sided block with a convex
corner and connects that inner corner to the opposite one, creating two quads on the surface.

Scheme Transition Four_to_two (see Figure 5-24) creates seven quads on a rectangular surface
that has intervals of four, two, two, and two on its sides.

The user also has the option of specifying a source curve and/or a source vertex. The rules for
these specifications are as follows:

If both a curve and vertex are specified, the vertex must be on the curve.
The Convex_corner sub-type does not allow a source curve.

The Four_to_two sub-type does not allow a source vertex.

The source curve will be the curve that will be given the fewest intervals.

The source vertex will specify which corner will be used for the scheme, in cases where this
makes sense (primarily in the Triangle, and Two_to_one cases).

If none of the optional information is given, the program will assign the source curve to be the
shortest one on the face, in keeping with the most probable desires of the user.

150 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

Figure 5-22: Scheme Transition Triangle and Half_circle

Figure 5-23: Scheme Transition Three_to_one and Two_to_one

Triangle

Applies to: Surfaces

Summary: Produces a triangle-primitive mesh for a surface with three logical sides

Syntax
{surface_list} Scheme Triangle

Discussion:

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl51

CHAPTER 5

Mesh Generation

Figure 5-24: Scheme Transition Convex_corner and Four_to_two

Trimap

Thetriangle scheme indicates that the region should be meshed as a triangle. The definition of
the triangle is general in that surfaces containing 3 natural corners can often be meshed
successfully with this algorithm. For instance, the surface of a sphere octant is handled nicely
by the triangle primitive. The algorithm requires that there be at least 6 intervals (2 per side)
specified on the curves representing the perimeter of the surface and that the sum of the intervals
on any two of the triangle’s sides be at least two greater than the number of intervals on the
remaining side. Figure 5-19 on page 149 illustrates a triangle mesh on a 3D surface.

Applies to: Surfaces
Summary: Places triangle elements at some vertices, and map meshes the remaining surface.
Syntax:
{surface_list} Scheme Trimap
Related Commands:
{surface_list} {vertex_list} Type {triangle|notriangle}
Discussion:

Some surfaces contain bounding curves which meet at a very acute angle. Meshing these
surfaces with an all-quadrilateral mesh will result in a very skewed quad to resolve that angle.
In some cases, this is a worse result than simply placing a triangular element to resolve that
angle. This scheme resolves this situation by placing a triangular element at such places, and
filling the remainder of the surface with a mapped mesh.

The algorithm computes whether a triangular element is necessary, along with where to place
that element, automatically. To override the choice of where triangular elements are used, the
following command can be used:

{surface_list} {vertex_list} Type {triangle|notriangle}

152 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

TriMesh, TriAdvance, TriMSC

Applies to: Surfaces
Summary: Automatically meshes a surface with an unstructured trianglular mesh.
Syntax:
{surface_list} Scheme {TriMesh | TriAdvance | TriMSC}
Related Commands:
[set] TetMesher {AMG | MSC | INRIA | Simulog}

Discussion:

The "TriMesh" scheme fills an arbitrary three-dimensional surface with

triangle elements. Three algorithms are available for this purpose.

1. The MSC/AMG Aries tetrahedron mesher has a surface meshing capability.

This is an optional component and therefore, not available in all CUBIT

installations. You can force this scheme for a surface by giving the command:
{surface_list} Scheme TriMSC

2. An advancing front algorithm is part of the standard CUBIT distribution.

It currently allows for holes in the surface and transitions between

dissimilar element sizes. It can use a sizing function like the pave scheme if

one is defined for the surface. Future development will add hard lines to

this scheme’s capabilities. This scheme will be the default "TriMesh" scheme

in the future. You can force this scheme for a surface by giving the command:

{surface_list} Scheme TriAdvance

3. The current default scheme is "QTRL" The "QTRI" scheme first paves the

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl53

CHAPTER 5 . Mesh Generation

surface and then cuts the quadrilateral elements in half to form triangles.

Figure 5-25 shows the default "QTRI" mesh (top) and the advancing front mesh

(bottom) for the same discretization of the boundary curves.

The default algorithm used by scheme "TriMesh" may be changed with the

following command:
[set] TriMesher {AMG | MSC | Advancing Front}

Setting the triangle mesher to "AMG" or "MSC" will select the MSC/AMG Aries
tetrahedron mesher as the default algorithm. This is optional software and
requires a separate licence, which may not be available. Setting the triangle
mesher to "Advancing Front" selects that algorithm as the default. All

surfaces with scheme "TriMesh" will use the advancing front algorithm to

generate the triangular surface mesh from that point foreward.

154 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER

Mesh Generation

NS
N T
N
Way o vatPy
O]
\\ 7‘74 N
A

VAN

<\
S0
20<)
ek
XL

4N

AV
VAV

\Z

24
QK
X

K\

A)‘h
N

=
7]
‘A!

a¥
{é
%%
A
%
%
%N
Y/\>
N
/
2
%
L
&
7
X

!A
5
%}
XX
%
%)
%
A
17
vy
Vil
%
%
%
7
Iy
Y7

Ve
YA

7
/!
\VAV
)
0

!
L7
Zan
Az
AT

Z
XA

7
N
N\

i

N
N
]
]
%
%
%%
%%
%
%
1]
%%,
Y
N
L7
AL

%
%)
17177
17
7
2
fAY

L1
117
1242/
v,
Za)
NN

L]

4!

VA"
sl

L7
JAVAY

\Y

7
7
7]

>
%
A 1
vy
Vo |
Ao
2\

2
7

2,

7
7
(447 v
v

4
%

%

2z
27

&
%
7

TAN
\WAVA"

AR OA
I ORISR Ly
SRR NI

A KSR RR RS

ARSI RIS

pVaVAV,
RSN SRR

\y P
XYL
R KIA
N NN AVAVAVA LS SN
SRS SR REEISERITD
ORISR SRR,
e acatach et O
A AT VAV ANAVA Y AYA
""sg%%AVAwAvAexgv
Nnﬂ’x"
w

AR
BSER
VAVAVAVAVAVAVAVAVAVAV 25

YAVA

TAy
PAVARAYAVAN
= VAXXVA S

W,

Figure 5-25: Meshes generated with scheme QTRI (top) and TriAdvamce (bottom)
Tripave
Applies to: Surfaces

Summary: Places triangle elements at some vertices, and paves the remaining surface.
Syntax:

{surface_list} Scheme Tripave
Related Commands:

{surface_list} {vertex_list} Type {triangle|notriangle}
Discussion:

Similar to the Trimap algorithm, but uses paving instead of mapping to fill the remainder of the
surface with quadrilaterals.

Document Version 4/18/00

CUBIT Version 4.0 Reference Manudl55

CHAPTER 5 . Mesh Generation

156

Whisker Weaving

Applies to: Volumes
Summary: Research algorithm for all-hexahedral meshing of arbitrary 3D volumes
Syntax:
{volume_list} Scheme Weave
Related Commands:
Pillow {volume_list}
{geom_list} Mesh [Fixed|Free]
Set AutoWeaveShrink [on]off]
Set Statelist [on|off]
Discussion:

Whisker Weaving is a volume meshing algorithm currently being researched and is not released
for general use. However, daring users may find the current form of the algorithm useful for
mostly-convex geometries.

Whisker Weaving holds the promise of being able to fill arbitrary geometries with hexahedra
that conform to a fixed surface mesh. The algorithm is based on rich information contained in
the Spatial Twist Continuum (STC), which is the grouping of the dual of an all-hexahedral mesh
into an arrangement of surfaces callgtkets Given a bounding quadrilateral surface mesh,
Whisker Weaving constructs sheets advancing from the boundary inward. The sheets are then
modified so that the arrangement dualizes to a well defined hexahedral mesh. Once the primal
hex-mesh is generated, interior node positions are generated by smoothing. Examples of meshes
generated using the whisker weaving algorithm are shown in Figure 5-26.

—m ;-:c r i

s

Figure 5-26: Some simple Whisker Weaving meshes with good quality.
Whisker Weaving Basic Commands

The basic steps for meshing a volume with Whisker Weaving are the following:
» Setthe meshing scheme for the volume to weave,
{volume_list} Scheme Weave
» Mesh the volume, which generates hexes,
Mesh {volume_list}
» Pillow the volume to remove certain additional degenerate hexes,

Pillow {volume_list}

CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

 and typically, smooth the mesh to improve quality, e.g.
{volume_list} Smooth Scheme Optimize Jacobian 1.05

Smooth {volume_list}
Whisker Weaving Options

Currently, Whisker Weaving relies on being able to perturb the bounding quadrilateral mesh.
However, a bounding surface’s mesh will not be changed if it is contained in another volume
that is already meshed. The user may also explicitly prevent Whisker Weaving from changing a
bounding mesh bfixing it with the following command:

{geom_list} Mesh [Fixed|Free]

The user may select an optional control strategy that doesn’t change the surface mesh by setting
AutoWeaveShrink off, and settingstatelist on with the following commands:

Set AutoWeaveShrink [on]off]
Set Statelist [on|off]

Numerous developer commands are available for stepping through the algorithm, examining
results, and toggling options. These are available via the online help but are not detailed here.

v Automatic Scheme Selection

For volume and surface geometries the user may allow CUBIT to automatically select the
meshing scheme. Automatic scheme selection is based on several constraints, some of which
are controllable by the user. The algorithms to select meshing schemes will use topological and
geometric data to select the best meshing tool. The command to invoke automatic scheme
selection is:

{geom_list} Scheme Auto

Specifically for surface meshing, interval specifications will affect the scheme designation. For
this reason it is recommended that the user specify intervals before calling automatic scheme
selection. If the user later chooses to change the interval assignment, it may be necessary to call
scheme selection again. For example, if the user assigns a square surface to have 4 intervals
along each curve, scheme selection will choose the surface mapping algorithm. However if the
user designates opposite curves to have different intervals, scheme selection will choose paving,
since this surface and its assigned intervals will not satisfy the mapping algorithm’s interval
constraints. In cases where a general interval size for a surface or volume is specified and then
changed, scheme selection will not change. For example, if the user specified an interval size of
1.0 a square 10X10 surface, scheme selection will choose mapping. If the user changes the
interval size to 2.0, mapping will still be chosen as the meshing scheme from scheme selection.
If a mesh density is not specified for a surface, a size based on the smallest curve on the surface
will be selected automatically.

Notes: Surface Auto Scheme Selection

Surface scheme selection will choose between Pave, Submap, Triangle, and Map meshing
schemes, and will always result in selecting a meshing scheme due to the existence of the paving
algorithm, a general surface meshing tool (assuming the surface passes the even interval
constraint; see “Interval Matching” on page 119).

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl57

CHAPTER 5

Mesh Generation

Surface auto scheme selection uses an angle metric to determine the vertex type to assign to each
vertex on a surface; these vertex types are then analyzed to determine whether the surface can
be mapped or submapped (see “Surface Vertex Types” on page 160). Often, a surface’s meshing
scheme will be selected dave or Triangle when the user would prefer the surface to be
mapped or submapped. The user can overcome this by several methods. First, the user can
manually set the surface scheme for the “fuzzy” surface. Second, the user can manually set the
“vertex types” for the surface (see “Surface Vertex Types” on page 160). Third, the user can
increase the angle tolerance for determining “fuzziness.” The command to change scheme
selection’s angle tolerances is:

[Set] Scheme Auto Fuzzy Tolerance {value} (value in degrees)

The acceptable range of values is between 0 and 360 degrees. If the user enters 360 degrees as
the fuzzy tolerance, no fuzzy tolerance checks will be calculated, and in general mapping and
submapping will be chosen more often. If the user enters 0 degrees, only surfaces that are
“blocky” will be selected to be mapped or submapped, and in general paving will be chosen
more often.

Notes: Volume Auto Scheme Selection

When automatic scheme selection is called for a volume, surface scheme selection is invoked
on the surfaces of the given volume. Mesh density selections should also be specified before
automatic volume scheme selection is invoked due to the relationship of surface and volume
scheme assignment.

Volume scheme selection chooses betwdap, SubmapandSweepmeshing schemes. Other
schemes can be assigned manually, either before or after the automatic scheme selection.

Volume scheme selection is limited to selecting schemes for 2.5D geometries, with additional
tool limitations (e.g. Sweep can currently only sweep from several sources to a singlerarget,
multiple targets; see “Sweep” on page 143); this is due to the lack of a completely automatic 3D
hexahedral meshing algorithm. If volume scheme selection is unable to select a meshing
scheme, the mesh scheme will remain as the default and a warning will be reported to the user.

Volume scheme selection can fail to select a meshing scheme for several reasons. First, the
volume may not be mappable and not 2.5D; in this case, further decomposition of the model
may be necessary (see “Geometry Decomposition” on page 73). Second, volume scheme
selection may fail due to improper surface scheme selection. Volume schemes $dap,as
Submap,andSweeprequire certain surface meshing schemes, as mentioned previously.

General Notes

In general automatic scheme selection reduces the amount of user input. If the user knows the
model consists of 2.5D meshable volumes, three commands to generate a mesh after importing
or creating the model are needed. They are:

volume all size <value>
volume all scheme auto
mesh volume all

The non-trivial, academic model shown in Figure 5-27 was meshed using these three commands

Scheme Firmness

158 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

Figure 5-27: Non-trivial model meshed using automatic scheme selectigpart of the model is
not shown in order to reveal the internal structure of the model)

Meshing schemes may be selected through three different approaches. They are: default
settings, automatic scheme selection, and user specification. These methods also affect the
scheme firmness settings for surfaces and volumes. Scheme firmness is completely analogous
to interval firmness (see “Interval Firmness” on page 117).

Scheme firmness can be set explicitly by the user using the command
{geom_list} Scheme {Default | Soft | Hard}
Scheme firmness settings can only be applied to surfaces and volumes.

This may be useful if the user is working on several different areas in the model. Once she/he is
satisfied with an area’s scheme selection and doesn’t want it to change, the firmness command
can be given to hard set the schemes in that area. Or, if some surfaces were hard set by the user,
and the user now wants to set them through automatic scheme selection then she/he may change
the surface’s scheme firmnesstdt or default .

v Mesh-Related Topics

There are several topics not related to any one specific mesh scheme, but which are important
to understand before using CUBIT to produce meshes. These topics are described in this
section.

Grouping Sweepable Volumes

Swept meshing relies on the constraint that the source and target meshes are topologically
identical or the target surface is unmeshed (see “Sweep” on page 143.) This results in there
being dependencies between swept volumes connected through non-manifold surfaces; these
dependencies must be satisfied before the group of volumes can be meshed successfully. For
example, if the model was a series of connected cylinders, the proper way to mesh the model
would be to sweep each volume starting at the top (or bottom) and continuing through each
successive connected volume.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl59

CHAPTER 5

Mesh Generation

With larger models and with models that contain volumes that require many source surfaces, the
process of determining the correct sweeping ordering becomes tedious. The sweep grouping
capability computes these dependencies and puts the volumes into groups, in an order which
represents those dependencies. The volumes are meshed in the correct order when the resulting
group is meshed.

To compute the sweep dependencies, use the command:
Group Sweep Volumes

This will create a group named “sweep_groups”, which can then be meshed using the
command:

Mesh sweep_groups

FullHex versus NodeHex Representation

CUBIT has two different internal representations of hexes: FullHexes and NodeHexes. The
NodeHex is a lighter weight datastructure, but occasionally nodeset and sideset shortcomings
can be overcome by using FullHexes. The user can select which type of hexes get created when
generating or importing a volume mesh with the following command:

Set FullHex Use {on|off}

Using the FullHex representation increases the memory used to store a mesh by a factor of
approximately five.

Surface Vertex Types

Several meshing algorithms in CUBIT “classify” the vertices of a surface or volume to produce
a high quality mesh. This classification is based on the angle between the edges meeting at the
vertex, and helps determine where to place the corners of the map, submap or triangle, or the
triangles in the trimap or tripave. For example, a surface mapping algorithm must identify the
four vertices of the surface that best represent the surface as a rectangle. Figure 5-28 illustrates

®
CORNER
(~270 deg.)
END
(~90 deg.
REVERSAL
(~360 deg.)

\ \ SIDE

l
/ I\ \ (~180 deg.)
| L

Figure 5-28: Angle Types for Mapped and Submapped Surfaces: An End vertex is contained
in one element, a Side vertex two, a Corner three, and a Reversal four.

160 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

the vertex angle types for mapped and submapped surfaces, and the correspondence between
vertex types and the placement of corners in a mapped or submapped mesh.

The surface vertex type is computed automatically during meshing, but can also be specified
manually. In some cases, choosing vertex types manually results in a better quality mesh or a
mesh that is preferable to the user. Vertex types are set using the following command:

{surface_list} {vertex_list} Type {end|side|corner|reversal}

Note that a vertex may be connected to several surfaces and its classification can be different for
each of those surfaces.

The influence of vertex types when mapping or submapping a surface is illustrated in Figure 5-
29. There, the same surface is submapped in two different ways by adjusting the vertex types of
ten vertices.

The user may specify the maximum allowable angle at a corner with the following command:
Set {Corner|End} Angle <degrees>

The user may also give greater priority to one automatic selection criteria over the others by
changing the following absolute weights. The “corner weight” considers how large angles are
at corners. The “turn weight” considers how L-shaped the surface is. The “interval weight”
considers how much intervals must change. The “large angle weight” affects only auto-scheme
selection: surfaces with a large angle will be paved instead. Each weight’s default is 1 and must
be between 0 and 10. The bigger a weight the more that criteria is considered.

Set Corner Weight <value>

Set Turn Weight <value>

Set Interval Weight <value>

Set Large Angle Weight <value>

An illustration of a mesh produced by the submapping algorithm is shown in Figure 5-29. The
meshes produced by submapping on the left and right result from adjusting the vertex types of
the eight vertices shown.

Preview Mesh

It is sometimes useful to view the nodal locations on curves graphically before meshing (which can
take considerably more time). The command to do this is:

Preview Mesh {body|volume|surface|curve|vertex} <id_range>

To clear the display of the temporary nodes, simply issue a “display” command.

v Mesh Smoothing

After generating the mesh, it is sometimes necessary to modify that mesh, either by changing
the positions of the nodes or by removing the mesh altogether. CUBIT contains a variety of
mesh smoothing algorithms for this purpose. Node positions can also be fixed, either by specific
node or by geometry entity, to restrict the application of smoothing to non-fixed nodes. There

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl61

CHAPTER 5 . Mesh Generation

E E
s S S s
S S
HEREEREEN
HEEEEREEN
Mesh & Vertex Types Mesh & Vertex Types
Logical submap shape Logical submap shape

Figure 5-29: Influence of vertex types on submap meshes; vertices whose types are changed
are indicated above, along with the mesh produced; logical submap shape shown below.

are also some procedures that can be done before meshing to increase the quality of the mesh.
See the section on Mesh Quality for more information.

Mesh smoothing in CUBIT operates in a similar fashion to mesh generation, i.e. it is a two-step
process whereby a smooth scheme is chosen and set, then a smooth command performs the
actual smoothing. Like meshing algorithms, there is a variety of smoothing algorithms
available, some of which apply to multiple geometry entity types and some which only apply to
one specific type (these algorithms are described below.) To smooth the mesh on a geometry
entity, the user must perform the following steps:

1) Set the smooth scheme for the object, along with any scheme-specific information, using the
smooth scheme setting commands described below.

2) Smooth the object, using the command:
Smooth {geom_list}
Groups of entities may be smoothed, by smoothing a group or a body.

If a Body is specified, the volumes in that Body are smoothed. If a Group is specified, only the
volume meshes within these groups aresmoothed - no smoothing of the suface meshes is
performed.

Typically, smoothing algorithms move nodes in order to improve the quality of the mesh on a
given geometry entity. Smoothing is terminated either by satisfying a smoothing tolerance or by

162 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

performing the maximum number of smoothing iterations. The smooth tolerance may be set by
the user:

[Set] Smooth Tolerance <tol>

The value<tol> tells the smoother to stop when node movement is less than tol * the local
minimum edge length. The default value for tol is 0.05. The maximum number of iterations may
be set by the user: For volumes, the smooth tolerance and iterations may be set by the user but
they are presently ignored by the smoothers:

Volume Smooth Tolerance <tol>
Volume Smooth Iterations <iters>

The default values are 0.05 for the tolerance and 18 * (number of hexes / number of nodes)*(1/
3)

Where used in the smooth schemes below,Rfee keyword permits the nodes lying on the
bounding entities to “float” along those entities; without this keyword, boundary nodes remain
fixed.

Nodal positions may béixed so that no smoothing scheme, either implicit or explicit, will
move them, with the following command:

{geom_list} Node Position [Fixed|Free]

The following command does not fix nodal positions, but does fix the connectivity of the mesh,
preventing certain volume schemes from changing the bounding mesh:

{geom_list} Mesh [Fixed|Free]

The specific smooth schemes available in CUBIT are now described in detail.

Smooth Scheme: Centroid Area Pull

Applies to: Surface Meshes
Summary: Attempts to create elements of equal area
Syntax:
{surface_list} Smooth Scheme Centroid Area Pull [Free] [Global]
Discussion:

This smooth scheme attempts to create elements of equal area. Each node is pulled toward the
centroids of adjacent elements by forces proportional to the respective element areas [8].

Using theglobal keyword when smoothing a group of surfaces will allow smoothing of mesh
on shared curves to improve the quality of elements on both surfaces sharing that curve.

Smooth Scheme: Equipotential

Applies to: Volume Meshes
Summary: Attempts to equalize the volume of elements attached to each node
Syntax:

{volume_list} Smooth Scheme Equipotential [Free]

Discussion:

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl63

CHAPTER 5

Mesh Generation

This smoother is a variation of thequipotential [8] algorithm that has been extended to
manage non-regular grids [9]. This method tends to equalize element volumes as it adjusts nodal
locations. The advantage of the equipotential method is its tendency to “pull in” badly shaped
meshes. This capability is not without cost: the equipotential method may take longer to
converge or may be divergent. To impose an equipotential smooth on a volume, each element
must be smoothed in every iteration—a typically expensive computation. While a Laplacian
method can complete smoothing operations with only local nodal calculations, the equipotential
method requires complete domain information to operate.

Smooth Scheme: Laplacian

Applies to: Curve, Surface, and Volume meshes
Summary: Tries to make equal edge lengths
Syntax:

{geom_list} Smooth Scheme Laplacian [Free] [Global]
Discussion:

The length-weighted laplacian smoothing approach calculates an average element edge length
around the mesh node being smoothed to weight the magnitude of the allowed node
movement [8]. Therefore this smoother is highly sensitive to element edge lengths and tends to
average these lengths to form better shaped elements. However, similar to the mapping
transformations, the length-weighted Laplacian formulation has difficulty with highly concave
regions.

Currently, the stopping criterion for curve smoothing is 0.005, i.e., nodes are no longer moved
when smoothing moves the node less than 0.005 * the minimum edge length. The maximum
number of smoothing iterations is the maximum of 100 and the number of nodes in the curve
mesh. Neither of these parameters can currently be set by the user.

Using theglobal keyword when smoothing a group of surfaces will allow smoothing of mesh
on shared curves to improve the quality of elements on both surfaces sharing that curve.

Smooth Scheme: Optimize Area

Applies to: Surface meshes
Summary: Produces smooth variation of element across a mesh
Syntax:
{surface_list} Smooth Scheme Optimize Area
Discussion:

SchemeDptimize Area generates a mesh by minimizing the sum of the squares of the area of
the local elements attached to a node. These meshes often have positive jacobians and give good
gradations of element area across a mesh, but are not smooth in an elliptic sense.

Smooth Scheme: Optimize Condition Number

Applies to: Surface and Volume meshes

Summary: Optimizes the mesh condition number to produce well-shaped elements.

164 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

Syntax:

Surface <surface_id_range> Smooth Scheme Optimize Condition
Number Fixed
Volume <volume_id_range> Smooth Scheme Optimize Condition
Number Fixed

Related Commands:
Optimize Untangle
Discussion:

Condition Number measures the distance of an element from the set of degenerate elements.
Optimization of the Condition number produces smooth, well-shaped elements when possible.
Condition number optimization requires that the initial mesh contain no negative Jacobians (run
smooth scheme optimize untangle as a pre-processor). Optimization of Condition Number then
guarantees that the optimized mesh will contain no negative Jacobians. Currently, the scheme is
being modified to extend the guarantee to the boundary of the mesh.

Smooth Scheme: Optimize Jacobian

Applies to: Volume meshes
Summary: Produces locally-uniform hex meshes by optimizing element Jacobians
Syntax:
{volume_list} Smooth Scheme Optimize Jacobian [param]
Discussion:

The Optimize Jacobian method minimizes the sum of the squares of the Jacobians (i.e.,
volumes) attached to the smooth node. Meshes smothed by this means tend to have locally-
uniform hex volumes.

The parametesparam> has a default value of 1, meaning that the method will attempt to make
local volumes equal. The parameter, which should always be between 1 and 2 (with 1.05
recommended), can be used to sacrifice local volume equality in favor of moving towards
meshes with all-positive Jacobians.

Smooth Scheme: Optimize Untangle

Applies to: Surface and Volume meshes
Summary: Untangle a mesh to remove negative Jacobian elements.
Syntax:

Surface <surface_id_range> Smooth Scheme Optimize
Untangle Fixed <double>

Volume <volume_id_range> Smooth Scheme Optimize
Untangle Fixed <double>

Related Commands:
Optimize Condition Number

Discussion:Occasionally one of the meshing schemes will produce elements having negative
Jacobians. Optimize untangle will automatically move mesh nodes to produce meshes with no

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl65

CHAPTER 5

Mesh Generation

negative Jacobian elements. Nodes connected to positive Jacobian elements are not moved.
Although the resulting mesh may have no negative Jacobians, the mesh will not be smooth (to
further improve the mesh ugeptimize Condition Number). The optional input parameter
<double> tells the untangler to halt when the minimum scaled Jacobian is roughly the value

of <double> . The default value of the parameter is 0 and the range is -1 to 1. In some cases it
is not possible to make the minimum scaled Jacobian greater than <double>, in which case the
optimizer does the best it can before exiting gracefully.

Smooth Scheme: Randomize

Applies to: Curve, Surface, and Volume meshes
Summary: Randomizes the placement of nodes on a geometry entity
Syntax:
{geom_list} Smooth Scheme Randomize [percent]
Discussion:

This scheme will create non-smooth meshes. If a percent argument is given, this sets the amount
by which nodes will be moved as a percentage of the local edge length. The default value for
percent is 0.40. This smooth scheme is primarily a research scheme to help test other smooth
schemes.

Smooth Scheme: Winslow

Applies to: Surface meshes
Summary: Elliptic smoothing technique for structured and unstructured surface meshes
Syntax:
{surface_list} Smooth Scheme Winslow [Free]
Discussion:

Winslow elliptic smoothing is based on solving Laplaces equation with the independent and
dependent variables interchanged. The method is widely used in conjunction with the mapping
and submapping methods to give smooth meshes with positive Jacobians, even on non-convex
two-dimensional regions. The method has been extended in CUBIT to work on unstructured
meshes.

v Mesh Deletion

Meshing a complex model often involves iteration between setting mesh parameters, meshing,
and checking mesh quality. This often requires removing mesh, for only an entity or for an entity
and all its lower order geometry, or sometimes for the entire model.

The command to remove all existing mesh entities from the model is:
Delete mesh
The command for deleting mesh on a specific entity is:

Delete mesh {geom_list} [Propagate]

166 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

These commands automatically cause deletion of mesh on higher dimensional entities owning
the target geometry.

If the Propogate keyword is used, mesh on lower order entities is deleted as well, but only if that
mesh is not used by another higher order entity. For example, if two surfaces (surfaces 1 and 2)
sharing a single curve are meshed, and the comitdaidte mesh surface 1 propagate”

is entered, the mesh on surface 1 is deleted, as well as the mesh on all the curves bounding
surface 1 except the curve shared by surface 2.

In some cases, the capability to delete individual mesh faces on a surface is needed. Deleting a
mesh face involves closing a face by merging two mesh nodes indicated in the input. The syntax
for this command is:

Delete Face <face_id> Nodel <nodel id> Node2 <node2_id>

This command is provided primarily for developers’ use, but also provides the user fine control
over surface meshes. At the present time, this command works only with faces appearing on
geometric surfaces and should be used before any hex meshing is performed on any volume
containing the face to be deleted.

v Node and NodeSet Repositioning

A capability to reposition nodesets and individual nodes is provided. This capability will retain
all the current connectivity of the nodes involved, but it cannot guarantee that the new locations
of the moved nodes do not form intersections with previously existing mesh or geometry. This
capability is provided to allow the user maximum control over the mesh model being
constructed, and by giving this control the user can possible create mesh that is self-intersecting.
The user should be careful that the nodes being relocated will not form such intersections.

The user can reposition nodes appearing in the same nodeset usihgpde&et Move
command. Moves can be specified using either a relative displacement or an absolute position.
The command to reposition nodes in a nodeset is:

{nodeset_list} move <delta_x> <deleta_y> <deleta_z>
{nodeset_list} move to <x_position> <y_position> <z_position>

The first form of the command specifies a relative movement of the nodes by the specified
distances and the second form of the command specifies absolute movement to the specified
position.

Individual nodes can be repositioned using the Node Move comand. Moves are specified as
relative displacements. The command syntax is:

Node <range> Move <delta_x> <deleta_y> <deleta_z>

v Mesh Importing and Duplicating

Meshes in Exodus Il format may be imported from a file and associated with geometry. The
mesh file may have been created by CUBIT, or from some other tool such as Grepos or Patran.

Meshes may also be copyied from one geometric entity to another.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl67

CHAPTER 5 . Mesh Generation

Importing mesh from an external file

see “Nodeset Associativity Data” on page 182.)

Import Mesh '<exoduslI_filename>’

[Block <block_id> [Volume <volume_id>]] [Preview]
Related Commands:

Delete Mesh Preview

Export [Genesis | Mesh] '<filename>’

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

set Import Mesh NodeSet Associativity [On|Off]

set [Export Mesh] NodeSet Assaociativity [On|Off]

The user can import a mesh from an Exodusll file and associate the mesh with matching
geometry. This mesh may then be manipulated normally; for example it may be smoothed or
part of it deleted and remeshed. The user can save his work by exporting the geometry and mesh,
and the importing the geometry and mesh later. In some cases this is faster or more reliable than
replaying journal files. Also, teams working on creating a conforming mesh of a large assembly
can pass information to one another: a team member can export the mesh on the surfaces
between two parts, then another team member import that mesh.

If an exported CUBIT mesh is going to be imported back onto the exact same geometry, then
before exporting the user shoiddt export mesh nodeset associativity on . This causes

extra nodeset data to be written, which associates every node to a geometric entity, so that
importing the mesh is more reliable. See “Nodeset Associativity Data” on page 182. When
importing, if the user does not want to use the nodeset associativity data that exists in a file, e.g.,
because the geometry is no longer identical since curves have been composited, or CUBIT
names have changed due to an ACIS version change, then before importing the usesethould
import mesh nodeset associativity off

Care should be taken that the geometry is merged the same way on export and import!

Between exporting and importing a mesh, the geometry may be modified slightly by
compositing entities. But if entities are partitioned or a body is webcut, unless the new vertices
match up almost exactly with nodes of the mesh, and the new curves match up almost exactly
with edge chains of the mesh, etc., it will be impossible to associated the mesh with the
geometry. If the user has trouble importing a mesh, he may import the mesh without associating
it with any geometry by specifying thereview option. This puts the imported mesh entities in

a group called ‘free_elements’. The user may then, drgyy fee_elements add to see if the

mesh indeed matches the geometry. Eventually, the user will want to get rid of these
unassociated mesh elements bydékete mesh preview command.

If neither ablock nor avolume is specified, then the entire mesh file is read. If a block is
specified without specifying a volume, associativiy is used to determine which volume the block
elements should be associated with. If a block and a volume are specified, the block elements
are associated with the specified volume. If a volume is specified without a block, associativity
data is used to find a block corresponding to the given volume.

168 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

Duplicating mesh

If the geometry to be meshed is similar to another meshed body, the user can use the command:
Copy Mesh Curve <curve_id_range> Onto Curve <curve_id_range>
[Source Node <starting node id> <ending node id>]
[Source Percent [<percentage>|auto]]
[Source [combine|SEPARATE]] [Target [combine|SEPARATE]]
[Source Vertex <id_range>] [Target Vertex <id_range>]
Copy Mesh Surface <surface_id> Onto Surface <surface_id>
[Source Face <id_range>]
[Source Node <id> Target Node <id>]
[Source Edge <id> Target Edge <id>]
[Source Vertex <id> Target Vertex <id>]
[Source Curve <id> Target Curve <id>] [Nosmoothing]
Copy Mesh Volume <volume_id> Onto Volume <volume_id>
[Source Vertex <vertex_id> Target Vertex <vertex_id>
[Source Curve <curve_id> Target Curve <curve_id>] [Nosmoothing]

For a discussion of this command, see 8eheme Copydescription. The only difference
between the scheme and this command is that this command takes place immediately.

v Mesh Quality Assessment

The ‘quality’ of a mesh can be assessed using several element quality metrics available in
CUBIT. Online information about the CUBIT quality metircs can be obtained from the
command

Quality Describe { hexahedral | tetrahedral | quadrilateral | triangular }

which gives data on the quality metrics for each of the above element types.

Metrics for Triangular Elements

For example,quality describe triangular yields the following information about CUBIT
triangle metrics:

Table 5-4: Description of Triangular Quality Measures

Function Dimension | Full Rangs Acceptable Reference
Name Range
Aspect L"O 1 toinf 1t01.3 1
Ratio Gam

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl69

CHAPTER 5 . Mesh Generation

Table 5-4: Description of Triangular Quality Measures

Function Dimension Full Range Acceptable Reference
Name Range

Element 0 to inf None None 2
Area
Maximum | degrees 60 to 180 60 to 90 2
Angle
Minimum degrees 0 to 60 30 to 60 2
Angle
Condition L"O 1 to inf 1t01.3 3
No.
Scaled L0 -1.155 to 0.5t01.155| 3
Jacobian +1.155

Triangular Quality Definitions:
Aspect Ratio Gamma: srms**2 / (2.30940108*area)
where Srms = sqrt(Sum(Si**2)/3), Si = edge length
Element Area. (1/2) * Jacobian at corner node
Maximum Angle: Maximum included angle in triangle
Minimum Angle: Minimum included angle in triangle
Condition No. Condition number of the Jacobian matrix at any corner

Scaled Jacobian: Minimum Jacobian divided by the lengths of 2 edge vectors

References for Triangular Quality Measures:
1. V. N. Parthasarathy et al, A comparison of tetrahedron quality measures,
Finite Elem. Anal. Des., Vol 15(1993), 255-261.
2. Traditional.
3. P. Knupp, Achieving Finite Element Mesh Quality via Optimization of the
Jacobian Matrix Norm and Associated Quantities, Part I, Int. J. Num. Meth. Engr.. 2000

Metrics for Quadrilaterals

Quality describe quadrilateral yields

170 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

Table 5-5: Description of Quadrilateral Quality Measures

Function Dimension | Full Range Acceptable Reference
Name Range

Aspect L0 1 to inf lto4 1
Ratio
Skew L0 Oto1l 0to 0.5 1
Taper L0 0 to inf 0to 0.7 1
Warpage L™O 0 to inf 0to 0.1 1
Element L"2 -inf to +inf | None 1
Area
Stretch L"O Oto1l 0.25t01 2
Minimum degrees 01to 90 45 to 90 3
Angle
Maximum | degrees 90 to 360 90 to 135 3
Angle
Oddy L0 0 to inf 0to 16 4&5
Condition L"O 1toinf lto4 5
No.
Jacobian L"2 - inf to inf None 5
Scaled L0 -1to+1 05to1l 5
Jacobian

Quadrilateral Quality Definitions:

Aspect Ratio: Maximum edge length ratios at quad center

Skew: Maximum |cos A| where A is the angle between edges at quad center
Taper: Maximum ratio of lengths derived from opposite edges
Warpage: Deviation of element from planarity.

Element Area: Jacobian at quad center

Stretch: Sart(2) * minimum edge length / maximum diagonal length
Minimum Angle: Smallest included quad angle (degrees).

Maximum Angle: Largestincluded quad angle (degrees).

Oddy: General distortion measure based on left Cauchy-Green Tensor

Condition No. Maximum condition number of the Jacobian matrix at 4 corners

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl71

Mesh Generation

CHAPTER 5 .

Jacobian: Minimum pointwise volume of local map at 4 corners & center of quad

Scaled JacobianMinimum Jacobian divided by the lengths of the 2 edge vectors

References for Quadrilateral Quality Measures:

1. J. Robinson, CRE Method of element testing and the Jacobian shape parameters, Eng.
Comput., Vol 4, 1987.

2. FIMESH code.
3. Unknown.
4. A. Oddy, J. Goldak, M. McDill, M. Bibby, A distortion metric for
isoparametric finite elements, Trans. CSME, No. 38-CSME-32,
Accession No. 2161, 1988.
5. P. Knupp, Achieving Finite Element Mesh Quality via Optimization of the
Jacobian Matrix Norm and Associated Quantities, Part I, Int. 3. Num. Meth. Engr.. 2000

Metrics for Tetrahedral Elements

Quality describe tetrahedral yields

Table 5-6: Description of Tetrahedral Quality Measures

172

Function Dimension | Full Range Acceptable Reference
Name Range

Aspect L0 1toinf 1to3 1
Ratio Bet
Aspect L0 1toinf 1to3 1
Ratio Gam
Element L3 -inf to +inf | None 1
\Volume
Condition L"O 1toinf 1to3 2
No.
Jacobian L3 -inf to +inf| None 2
Scaled L"O -1.414 to 0.5to 2
Jacobian +1.414 +1.414

Tetrahedral Quality Definitions:

Aspect Ratio Beta: CR /(3.0 * IR) where CR = circumsphere radius,

CUBIT Version 4.0 Reference Manual

Document Version 4/18/00

CHAPTER 5 .

IR = inscribed sphere radius
Aspect Ratio Gamma:Srms**3 / (8.479670*V)

Mesh Generation

where Srms = sqrt(Sum(Si**2)/6), Si = edge length
Element Volume (1/6) * Jacobian at corner node
Condition No. Condition number of the Jacobian matrix at any corner
Jacobian Minimum pointwise volume at any corner

Scaled Jacobian: Minimum Jacobian divided by the lengths of 3 edge vectors

References for Tetrahedral Quality Measures:
1. V. N. Parthasarathy et al, A comparison of tetrahedron quality measures,
Finite Elem. Anal. Des., Vol 15(1993), 255-261.
2. P. Knupp, Achieving Finite Element Mesh Quality via Optimization of the

Jacobian Matrix Norm and Associated Quantities, Part Il, Int. J. Numer. Meth. Engr., 2000

Metrics for Hexahedral Elements

Quality describe hexahedralyields

Table 5-7: Description of Hexahedral Quality Measures

Function Dimension| Full Range Acceptable Reference
Name Range

Aspect L"O 1toinf lto4 1
Ratio
Skew L"O Oto1l 0to 0.5 1
Taper L"O 0 to +inf O0to04 1
Element L"3 - inf to inf None 1
Volume
Stretch L~O Oto1l 0.25t0 1 2
Diagonal L"0 Oto1l 0.65t01 3
Ratio
Dimension LM O to inf None 1
Oddy L"O 0 to inf 0to 20 4,5
Condition L~O 1toinf 1to 8 5
No.

Document Version 4/18/00

CUBIT Version 4.0 Reference Manudl73

CHAPTER 5 .

Mesh Generation

Table 5-7: Description of Hexahedral Quality Measures

Function Dimension| Full Range Acceptable Reference
Name Range
Jacobian L"3 - inf to inf None 5
Scaled L"O -1to+1 05t01 5
Jacobian

Hexahedral Quality Definitions:
Aspect Ratio: Maximum edge length ratios at hex center.
Skew: Maximum |cos A| where A is the angle between edges at hex center.
Taper: Maximum ratio of lengths derived from opposite edges.
Element Volume: Jacobian at hex center.
Stretch: Sqrt(3) * minimum edge length / maximum diagonal length.
Diagonal Ratio: Minimum diagonal length / maximum diagonal length.
Dimension: Pronto-specific characteristic length for stable time step
calculation. Char_length = Volume / 2 grad Volume.
Oddy:

Condition No. Maximum condition number of the Jacobian matrix at 8 corners.

General distortion measure based on left Cauchy-Green Tensor.
Jacobian: Minimum pointwise volume of local map at 8 corners & center of hex.

Scaled JacobianMinimum Jacobian divided by the lengths of the 3 edge vectors.

References for Hexahedral Quality Measures:
1. L.M. Taylor, and D.P. Flanagan, Pronto3D - A Three Dimensional Transient
Solid Dynamics Program, SAND87-1912, Sandia National Laboratories, 1989.
2. FIMESH code
3. Unknown
4. A. Oddy, J. Goldak, M. McDill, M. Bibby, A distortion metric for
isoparametric finite elements, Trans. CSME, No. 38-CSME-32,
Accession No. 2161, 1988.
5. P. Knupp, Achieving Finite Element Mesh Quality via Optimization of the
Jacobian Matrix Norm and Associated Quantities, Part 11, Int. J. Num. Meth. Engr., 2000

Details on Robinson Metrics for Quadrilaterals

The quadrilateral element quality metrics that are calculated are aspect ratio, skew, taper,
warpage, element area, and stretch. The calculations are based on metrics described in [18]. An
illustration of the shape parameters is shown in Figure 5-30 The warpage is calculated as the Z

174 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 . Mesh Generation

11 11
. /s 7
__ _Baselne % //
/ /
| ' / 7
I | Y s/
I b _/
L a i 11 11
Aspect Ratio = a/b
I/Z_" —~ — _
r-—r-— - - — — — — 0 7 - - - — : - 7T2
| / |/ / D
/A / / /
/ 1 /
/ /
— — 7712
L 2~ 1 IZ,_L,_/_/_’_’_(_ — 7 ldc
Skew = sin(A) Taper=T1& T2

Figure 5-30: lllustration of Quadrilateral Shape Parameters (Quality Metrics)

deviation from the ‘best-fit’ plane containing the element divided by the minimum of ‘a’ or ‘b’
from Figure 5-30. The stretch metric is calculated by dividing the length of the shortest element
edge divided by the length of the longest element diagonal.

Command Syntax

The base command to view the quality of a mesh is the following:

Quality {geom_and_mesh_listt [metric name] [quality options]
[filter options]

Where the list contains surfaces and volumes and groups that have been meshed with faces,
triangles, hexes, and tetrahedra; the list can also specify individual mesh entities or ranges of
mesh entities.

If a specificmetric name is given, only that metric or metrics are computed for the specified
entities. Note that the metric given must be one which applies to the given entities; quality
metrics and which entities to which they apply are summarized above.

The quality options are:
* [Global | Individual]:

If the user specifiemdividual , one quality summary is generated for each entity specified on
the command line. If the user specifigiobal , or specifies neither, then one quality summary
is generated for each mesh element type.

* [Draw [Histogram] [Mesh] [Monochrome] [Add]]:

If the user specifiesiraw histogram , then histograms are drawn, in a separate graphics
window. The window contains one histogram for each quality metric. If the user spetties

mesh, then the mesh elements are drawn in the default graphics window. The histogram and
mesh graphics are color coded by quality: a smallest metric value corresponds to red, a largest
metric value to blue, and in-between values according to the rainbawoifochrome is
specified, then the graphics are not color codeddt is specified, then the current display is

not cleared before drawing the mesh elements.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl75

CHAPTER 5

Mesh Generation

* [List [Detail] [Id] [Verbose Errors]]:

If the user specifiekist, then the quality data is summarized in text folrst Detail lists the

mesh elements by ascending quality mettiist Id lists the ids of the mesh elements. If
Verbose Errors is specified, then details about unacceptable quality elements are printed out
above the summaries.

There are several options available to filter the output of the quality command, using the
following filter options :

e [High <value>] [Low <value>]:

Discards elements with metric values above or below value; either or both can be used to get
elements above or below a specified value or in a specified range.

* [Top <number>] [Bottom <number>]:

Keeps only number elements with the highest or lowest metric values. For exaQphity
hex all top 10 ” would request the elements with the 10 highest values of the aspect ratio
metric.

Example Output

The typical summary output from the commamuility surface 24 is shown in Table 5-8.
Figure 5-31 left shows the corresponding histogram. The colored element display resulting from
the commandjuality surface 1 draw ‘Skew’ is shown in Figure 5-31 right. A color legend

is also printed to the terminal; see Table 5-9.

Table 5-8: Typical Summary for a Quality Command

Surface 24 Quad quality, 280 elements:

Function Name Average Std Dev Minimum (id) Maximum (id)

Aspect Ratio 1.257e+00 2.574e-01 1.000e+00 (2) 2.504e+00 (346)
Skew 2.247e-01 1.808e-01 1.612e-03 (190) 8.153e-01 (80)
Taper

Warpage 1.199e-03 1.121e-03 2.369e-06 (271) 5.913e-03 (380)

Element Area 6.335e-04 4.724e-04 3.450e-05 (15) 2.219e-03 (329)

Stretch 7.406e-01 1.174e-01 3.266e-01 (156) 9.719e-01 (184)

Maximum Angle 1.137e+02 1.509e+01 9.089e+01 (184) 1.720e+02 (112)

Minimum Angle 6.835e+01 1.278e+01 3.110e+01 (80) 8.888e+01 (184)
Oddy 2.025e+00 1.159e+01 3.893e-03 (183) 1.913e+02 (112)

Folding 2.314e-01 1.447e-01 9.875e-03 (184) 8.703e-01 (112)

Jacobian

Scaled Jacobian 8.731e-01 1.353e-01 1.385e-01 (112) 9.998e-01 (184)

3.076e-02 3.456e-02 3.772e-05 (259) 1.992e-01 (349)

5.195e-04 4.107e-04 2.240e-05 (14) 1.889e-03 (212)

176 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5 - Mesh Generation

Table 5-9: Legend for Quality Surface 1 Skew Draw Mesh

Surface 24 Quad quality, 280 elements:
Skew ranges from 1.612e-03 to 8.153e-01 (280 entities)
Blue ranges from 1.612e-03 to 1.178e-01 (102 entities)
Cyan ranges from 1.178e-01 to 2.341e-01 (60 entities)
Green ranges from 2.341e-01 to 3.503e-01 (58 entities)
Yellow ranges from 3.503e-01 to 4.666e-01 (29 entities)
DkYellow ranges from 4.666e-01 to 5.828e-01 (15 entities)
Pink ranges from 5.828e-01 to 6.990e-01 (12 entities)
Red ranges from 6.990e-01 to 8.153e-01 (4 entities)

Quality Surface 24 Draw Histogram Quality Surface 24 Skew Draw Mesh

Figure 5-31: lllustration of Quality Metric Graphical Output
Controlling Mesh Quality

After a model is meshed, if the quality of mesh isn’t acceptable, then there are two options
available to improve that quality. The user can ask for more smoothing, or delete the mesh and
start over. There are some tools that the user can invoke before meshing the model which can
help to improve mesh quality. Skew control is one of these tools, and will be discussed here.

The philosophy behind the skew control algorithm is one of subdividing surfaces into blocky,
four-sided areas which can be easily mapped. The goal of this subdivide-and-conquer routine is
to lessen the skew that a mesh exhibits on submapped regions. By controlling the skew on these
surfaces, the mesh of the underlying volume will also demonstrate less skew.

The commands for skew control are:
Control Skew Surface {surface_list} [Individual]
Delete Skew Control {surface_list} [Propagate]

The keywordIndividual is deprecated. It's purpose is to specify that surfaces should be
processed without regards to the other surfaces in the given list. This is not necessary, and could
lead to problems with the final mesh. When the command is entered, the algorithm immediately
processes the surfaces, inserting vertices and setting interval constraints on the resulting

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl77

CHAPTER 5

Mesh Generation

subdivided curves. In this way the mesh is more constrained in its generation, and the resulting
skew on the model can be lessened. The only surfaces which can utilize this algorithm are those
which lend themselves to a structured meshing scheme, although future releases might lessen
this restriction.

The user also has the ability to delete the changes that the skew control algorithm has made. This
is done by using thdelete skew controlcommand. When the user requests the deletion of the
skew control changes on a given surface, every curve on that surface will have the skew control
changes deleted, even if a given curve is shared with another surface on which skew control was
performed. If the user wishes to propagate the deletion of skew control to all surfaces which are
affected by one (or more) particular surfaces, the keypapagate should be used.

v Mesh Validity

After a mesh is generated, it is checked to ensure that the mesh has valid connectivity. If an
invalid mesh is formed, then CUBIT automatically deletes it. This default behavior can be
changed with the following command:

Set Keep Invalid Mesh [on|off]
The current behavior can be viewed with the following command:
List Keep Invalid Mesh

The Jacobian quality metric is also computed automatically to check quality after a mesh is
generated. If the quality is poor, a warning is printed to the terminal.

178 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

g1
Chapter O: Finite Element Model

Definition and Output
v Introduction...179
v Finite Element Model Definition...179
v Element Block Specification...181
v Nodesets and Sidesets...181
v Exodusll Model Title...183
v Exporting the Finite Element Model...184

v Introduction

This chapter describes the techniques used to complete the definition of the finite element model
and the commands to export the finite element mesh to an Exodus database file. The definitions
of the basic items in an Exodus database are briefly presented, followed by a description of the
commands a user would typically enter to produce a customized finite element problem
description.

v Finite Element Model Definition

Sandia’s finite element analysis codes have been written to transfer mesh definition data in the
Exodusll file format [6]. The Exodusll database exported during a CUBIT session is sometimes
referred to as a Genesis database file; this term is used to refer to a subset of an Exodus file
containing the problem definition only, i.e., no analysis results are included in the database.

The Exodusll database contains mechanisms for grouping elements into Element Blocks, which
are used to define material types of elements. Exodusll also allows the definition of groups of
nodes and element sides in Nodesets and Sidesets, respectively; these are useful for defining
boundary and initial conditions. Using Element Blocks, Nodesets and Sidesets allows the
grouping of elements, nodes and sides for use in defining boundary conditions, without storing
analysis code-specific boundary condition types. This allows CUBIT to generate meshes for
many different types of finite element codes.

Element Blocks

Element Blocks (also referred to as simfypckg are a logical grouping aflementsill having
the same basic geometry and number of nodes. All elements within an Element Block are
required to have the same element type. Access to an Element Block is accomplished through a

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl79

CHAPTER 6 . Finite Element Model Definition and Output

user-specified integer Block ID. Typically, Element Blocks are used by analysis codes to
associate material properties and/or body forces with a group of elements.

Nodesets

Nodesets are a logical grouping abdesaccessed through a user-specified Nodeset ID.
Nodesets provide a means to reference a group of nodes with a single ID. They are typically
used to specify load or boundary conditions on portions of the CUBIT model or to identify a
group of nodes for a special output request in the finite element analysis code.

Sidesets

Sidesets are another mechanism by which constraints may be applied to the model. Sidesets
represent a grouping element sideand are also referenced using an integer Sideset ID. They
are typically used in situations where a constraint must be associated with element sides to
satisfactorily represent the physics (for example, a contact surface or a pressure.

Element Types

The basic elements used to discretize geometry were described in a previous chapter (see
“Element Types” on page 180). Within each basic element type, several specific element types
are available; these specific element types vary by the number of nodes used to define the
element, and result in different orders of accuracy of the element. The element types available
for each basic element type defined in CUBIT are summarized in Table 6-1. For a description
of the node and side numbering conventions for each specific element type, see Appendix D.

Element types can be set for individual Element Blocks, either before or after meshing has been
performed. Higher-order nodes are created only when the mesh is being exported to the
Exodusll file, and persist in the CUBIT database after file export.

Table 6-1: Element types defined in CUBIT.

Basic Element Type Specific Element Types Notes
Edge BAR, BEAM Bars have 2 DOF’s per node, Beams 3
Triangle TRI, TRI3, TRI6, TRI7 Tri element nodal coordinates are
always 3D.
Quadrilateral QUAD, QUAD4, QUADS, | Quad element nodal coordinates are 2D,
QUADY9; SHELL, that is their nodes contain only x and y
SHELL4, SHELLS, coordinates. Shell element nodal coor-
SHELL9 dinates are 3D.
Tetrahedron TETRA, TETRAA4, TETRAS8 contains vertex nodes and
TETRAS8, TETRA10 mid-face nodes, experimental element
used in Sandia FEA research
Hexahedron HEX, HEXS8, HEX20,
HEX27

180 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 6 " Finite Element Model Definition and Output

v Element Block Specification

Element blocks are the method CUBIT uses to group related sets of elements into a single entity.
Each element in an element block must have the same basic and specific element type. Element
Blocks may be defined for volumes, surfaces, and curves. Element blocks are defined with the
following Block commands.

Block <block_id> {Curve | Surface | Volume} <range>
Block <block_id_range> Element Type <type>
Block <block_id_range> Attribute <value>

Some important notes regarding Element Blocks are as follows:

» Multiple volumes, surfaces, and curves can be contained in a single element block
» Avolume, surface, or curve can only be in one element block

» Element Block id’s are arbitrary and user-defined. They do not need to be in any contiguous
sequence of integers.

» Element Blocks can be assigned a single floating point number, referred to as the block
Attribute; this number is used to represent the length or thickness of Bar and Shell elements,
respectively. The attribute defaults to 1.0 if not specified.

When exporting an Exodusll file, if the user has not specified any Element Blocks, by default
element blocks will be written for any meshed volumes. This default behavior can be changed,
to write surface, volume, or no meshes by default. This option can be set using the command

Set Default Blocks [on|off|Volume|Surface]

If the element type is not assigned for an element block, it will be assigned a default type
depending on which type of geometry entity is contained in the block; default element block id’s
are also determined by the geometry entity being meshed. The default values used for element
type and id are:

Volume: The default block ID will be set to the Volume ID and 8-node hexahedral elements
will be generated.

Surface: The block ID will be set to 0 and 4-node shell elements will be generated.
Curve: The block ID will be set to 0 and 2-node bar elements will be generated.

Several examples of specifying various types of element blocks are given in Appendix A:.

v Nodesets and Sidesets

Boundary conditions such as constraints and loads are applied to the finite element model using
nodesets and sidesets. Nodesets can be created from groups of nodes categorized by their
owning volumes, surfaces, or curves. Nodes can belong to more than one nodeset. Sidesets can
be created from groups of element sides or faces categorized by their owning surfaces or curves.
Element sides and faces can belong to more than one sideset. Nodesets and Sidesets can be
viewed individually through CUBIT by employing theraw Nodeset andDraw Sideset
commands.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl81

CHAPTER 6

Finite Element Model Definition and Output

Nodesets and Sidesets may be assigned to the appropriate geometric entities in the model using
the following commands:

Nodeset <nodeset_id> {Curve | Surface | Volume | Vertex} <range>

Sideset <sideset_id> Surface <range>
[Remove|Forward|Reverse|Both|wrt Volume <id>]

Sideset <sideset_id> Curve <range> [Remove|wrt {Surface <id>|All}]

Like element blocks, Nodesets and Sidesets are given arbitrary, user-defined ID numbers. If
there are no user-defined Nodesets or Sidesets, none are written to the Exodusll file.

With Sidesets, direction is often important. For surfaces, the direction may be specified using
theForward, Reverse or Both options. Thd=orward option will write a sideset for the hexes

in the surface’s forward volume, which is the volume that the surface’s normal points away
from. TheReverseoption will write a sideset for the hexes in the surface’s reverse volume,
which is the volume that the surface’s normal points into. Bb#h option will allow sidesets

to be written for the hexes that lie in volumes on both sides of the surface. The default is
Forward. The user can additionally specifiy the volume from which the hexes should be taken
by thewrt Volume option.

Direction is equally important for curves in Sidesets. Tre Surface option allows the user
to indicate which surface’s faces will be included in the Sideset.vilth&ll option will include
all faces attached to the curve. The defauktrisAll .

Nodeset Associativity Data

Nodesets can be used to store geometry associativity data in the Exodusll file. This data can be
used to associate the corresponding mesh to an existing geometry in a subsequent CUBIT
session. This functionality can be used either to associate a previously-generated mesh with a
geometry (“Mesh Importing and Duplicating” on page 167), or to associate a field function with

a geometry for adaptive surface meshing (see “Adaptive Meshing” on page 215).

The commands to control and list whether associativity data is written or read from an Exodusl|
files are the following. Note th&omplete is only used for Adaptive Meshing, while the other
options are useful for re-importing meshes into CUBIT.

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

List [Export Mesh] NodeSet Associativity Complete

set Import Mesh NodeSet Associativity [On|Off]

set [Export Mesh] NodeSet Associativity [On|Off]

set [Export Mesh] NodeSet Associativity Complete [On|Off]

Associativity data is stored in the Exodusll file in two locations. First, a nodeset is written for
each piece of geometry (vertices, curves, etc) containing the nodes owned for that geometry.
Then, the name of each geometry entity is associated with the corresponding nodeset by writing
a property name and designating the corresponding nodeset as having that property. Nodeset
numbers used for associativity nodesets are determined by adding a fixed base number
(depending on the order of the geometric entity) to the geometric entity id number. The base

182 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 6 .

Finite Element Model Definition and Output

numbers for various orders of geometric entities are shown in Table 6-2. For example, nodes
owned by curve number 26 would be stored in associativity nodeset 40026.

Table 6-2: Nodeset id base numbers for geometric entities

Geometric Entity

Base Nodeset Id

Vertex

50000

Curve

40000

Surface

30000

Volume

20000

Instead of storing just the nodes owned by a particular entity, nodes for lower order entities are
also stored. For example, the associativity nodeset for a surface would contain all nodes owned
by that surface as well as the nodes on the bounding curves and vertices.

v Exodusll Model Title

CUBIT will automatically generate a default title for the Genesis database. The default title has

the form:

cubit(genesis_filename): date: time

The title can be changed using the command:

Title '<title_string>’

v Transforming Mesh Coordinates

A mesh can be transformed to a new location as it is written to an Exodus file. To transform a
mesh during export use the following command:

Transform Mesh Output

[Scale <factor> [<factor> <factor>]]

[Scale {X]Y|Z} <factor>]

[Translate <dx> [<dy> [<dz>]]]
[Translate {X]|Y|Z} <distance>]
[Rotate <degrees> about {X|Y|Z}]

[Reset]

This command may be repeated any number of times using any number of options. Transform
commands are cumulative, added to the effect of previous transforms. UResbeoption to

clear the transformation matrix and to prevent previous transformation commands from
affecting node positions in the output file.

Transforming a mesh during output does not change the position of the mesh within CUBIT. It
only changes the nodal positions written to the Exodus file.

Document Version 4/18/00

CUBIT Version 4.0 Reference Manudl83

CHAPTER 6 . Finite Element Model Definition and Output

v Exporting the Finite Element Model

After defining the element blocks, nodesests and sidesets for a model, the model can be written
to the Exodusll file using the command:

Export Genesis '<filename>’

184 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

=
el
v References '

1 T. D. Blacker and M. B. Stephenson, ‘Paving: a new approach to automated quadrilateral mesh generation’, SAND90-0449,
Sandia National Laboratories, (1990).

2 M. B. Stephenson, S. A. Canann, and T. D. Blacker, ‘Plastering: a new approach to automated, 3D hexahedral mesh gegera-
tion’, SAND89-2192, Sandia National Laboratories, (1992).

3 G. D. Sjaardema, et. aCUBIT Mesh Generation Environment, Volume 2: Developers Mai8A&IND94-1101, Sandia Na-
tional Laboratories, (1994).

4 Spatial Technology, INcACIS Test Harness Application Guide Version Sgatial Technology, Inc., Applied Geometry, Inc.,
and Three-Space, Ltd., (1992).

T. D. BlackerFASTQ Users Manual Version 12AND88-1326, Sandia National Laboratories, (1988).
L. A. Schoof EXODUS Il Application Programming Interfadaternal memo, Sandia National Laboratories, (1992).

W. A. Cook and W. R. Oakes, ‘Mapping methods for generating three-dimensional mé&teg, mech. engvolume 1,
67-72 (1982).

R. E. JonexQMESH: A Self-Organizing Mesh Generation Progra&8hA - 73 - 1088, Sandia National Laboratories, (1974).

R. E. Tipton, ‘Grid Optimization by Equipotential Relaxation’, unpublished, Lawrence Livermore National Laboratory
(1990).

10 A P.Gilkey and G. D. Sjaardem@EN3D: A GENESIS Database 2D to 3D Transformation PrograAND89-0485, San-
dia National Laboratories, (1989).

11 G. D. SjaardemaGREPOS: A GENESIS Database Repositioning Progi@AND90-0566, Sandia National Laboratories,
(1990).

12 G.D. Sjaardemd;JOIN: A Program for Merging Two or More GENESIS Databa®AND92-2290, Sandia National Lab-
oratories, (1992).

13 G.D. Sjaardema@PREPRO: An Algebraic Preprocessor for Parameterizing Finite Element Analya&iD92-2291, San-
dia National Laboratories, (1992).

14 G. D. Sjaardem&verview of the Sandia National Laboratories Engineering Analysis Code Access SyAtdB02-2292,
Sandia National Laboratories, (1993).

15 S. C. Lovejoy and R. G. WhirlefpYNA3D Example Problem ManydJCRL-MA--105259, University Of California and
Lawrence Livermore National Laboratory, (1990).

16 Open Software Foundation, IN@SF/MotifM User's Guide Revision 1, PTR Prentice Hall, Englewood Cliffs, New Jersey,
(1993).

17 J. M. OsierKeeping Track, Managing Messages with GNATS, The GNU Problem Report Management3gstemanual
for GNATS Version 3.2, Cygnus Support, October 1993.

18 J. Robinson, “CRE method of element testing and Jacobian shape pardamete@omput.\Vol. 4 (1987).

19 L. M. Taylorand D. P. Flanagan, Pronto 3D—A Three-Dimensional Transient Solid Dynamics Program, SAND87-1912, San-
dia National Laboratories, (1989).

20 S. W. Attaway, unpublished, (1993).

21 A.Oddy, J. Goldak, M. McDill, and M. Bibby “A Distortion Metric for Isoparametric Finite Elements” Transactions of the
Canadian Soc. Mech. Engr., pp213-217, Vol 12, No 4, 1988.

22 V.N.Parthasarathy, C.M. Graichen, A.F. Hathaway, "A comparison of tetrahedron quality measures", Finite Elem. Anal. Des.,
Vol 15(1993), 255-261.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl85

CHAPTER

186 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

Biei]

v Introduction...187

Appendix A Examples

v General Comments...187

v Simple Internal Geometry Generation...188
v Octant of Sphere...190

v Box Beam...190

v Thunderbird 3D Shell...193

v Advanced Tutorial...196

v Exodusll File Specification...200

v Introduction

The purpose of this Appendix is to demonstrate the capabilities of CUBIT for finite element
mesh generation as well as provide a few examples on the use of CUBIT. Some examples also
demonstrate the use of the ACIS test harness as well as other related programs. This Appendix
is not intended to be a step-by-step tutorial.

v General Comments

The examples in this appendix show the use of CUBIT under various scenarios. To reproduce
these examples, the user would need the journal files containing the CUBIT commands
described below, and in some cases an ACIS SAT file containing model geometry. The journal
files and SAT files necessary for running these examples are available from the CUBIT web site.
For examples not requiring SAT files, the user can also type in the commands described for that
example.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl87

APPENDIX / \. Examples

The examples in this appendix each cover several of CUBIT’s mesh generation capabilities. The
CUBIT features exercised by each example are shown in Table A-1.

. \Volume
Geometry Surface Meshing .
Examples Meshing
Features Features
Features
c
[}
€
s 5 -
= = (@) o (@) c
g |2 g ﬁ g o = g g g o 'g
> s|E2Ic|B|E|o|Q|E|la|8|E |2
= |2 | gfDdlleslE|2|E|c|8|l2|E|Q|®
Els|e|e|g|S|8|3|S|E|E(5|8 5
a|la|afl=||E|d|=|alF|a|ld|d|=|F
Internal Geometry x| x X X X | X
Sphere Octant X | x | x ||x || X X | x | x ||x | X X
Box Beam X X || X X
Thunderbird X | X X X
Advanced Tutorial X |[x [|x | x [x |x X |[x [x |x

Table A-1: CUBIT Features Exercised by Examples.

v Simple Internal Geometry Generation

This simple example demonstrates the use of the internal geometry generation capability within
CUBIT to generate a mesh on a perforated block. The geometry for this case is a block with a
cylindrical hole in the center. Itillustrates theck , cylinder , subtract , pave, andtranslate
commands and boolean operations. The geometry to be generated is shown in Figure A-1. This
figure also shows the curve and surface labels specified in the CUBIT journal file. The final
meshed body is shown in Figure A-2. The CUBIT journal file is:

Internal Geometry Generation Example

Brick Width 10. Depth 10. Height 10. # Create Cube

Cylinder Height 12. Radius 3. # Create cylinder through Cube

View From 15 20 25 # Move to new Viewpoint

Display #You may want to move to graphics window to mouse
#around to get the feel for it

Subtract 2 From 1 # Remove cylinder from cube—create hole

Body 3 Size 1.0 # Default element size for model

Label Curve On
Label Surface On #Turn on curve and surface labels for scheme
#and size specification
Display
Surface 10 Interval 10 # Change intervals on cylinder surface
Curve 15 to 16 Interval 20 # Change intervals around cyl. circ.
Surface 11 Scheme Pave # Front surface paved

Volume 3 Scheme Sweep Source 11 Target 12 #Remainder
of block will be meshed by

sweeping front surface to back surface
Mesh Volume 3 # Create the mesh

Graphics Mode Hiddenline # Hiddenline view of cube (Figure B-2)

188 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX / \. Examples

The first two lines create a 10 unit cube centered at the origin and a cylinder with radius 3 units
and height of 12 units also centered at the origin. The cylinder height is arbitrary as long as it is
greater than the height of the brick. Thabtract command then performs the boolean by
subtracting the cylinder (body 2) from the block (body 1) to create the final geometry (body 3).
The remainder of the commands simply assign the desired number of intervals and then
generate the mesh. Note that since the cylindrical hole is a “periodic surface,” there are no edges
joining the two curves so the number of intervals along its axis must be set by the surface
interval command.

Figure A-2: Generated Mesh for Cube with Cylindrical Hole

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl89

APPENDIX / \. Examples

v Octant of Sphere

This example also illustrates the internal geometry generation capabilities of CUBIT to generate
an octant of a sphere. The procedure used is to generate the octant by creating a sphere only on
the positive quadrant of the reference frame. Two methods of meshing are demonstrated in this
example: one is to decompose the octant into to volumes - a central “core” and an outer “peel”
which are both meshable using the sweep schemes. The second is to mesh the octant with the
triangle and tetrahedron meshing scheme. This example usgstitbe, webcut, merge, auto,
triangle, tetrahedron and smoothcommands.
The following annotated CUBIT journal file will generate the meshes shown in Figure A-3.

create an octant of a sphere on the positive quadrant

Sphere Radius 10.0 xpos ypos zpos #create the octant

Webcut Body 3 Cylinder Radius 4 Axis z Noimprint Nomerge

coalesce redundant surfaces
Merge All

Volume 5 Size 0.4999
Volume 4 Size 0.6

Volume all Scheme Auto #Use auto to set meshing schemes
List Volume 4 #List the volume to see the schemes
List Volume 5 #List the volume to see the schemes

Mesh Volume all

#now try it with the tetrahedron this way

Reset

Sphere Radius 10. xpos ypos zpos #Create an octant

the tetrahedron scheme will mesh a tetrahedron with hexes

Volume 3 scheme tetrahedron #mesh the volume with the primitive

Surface All Scheme Triangle #Surfaces must be scheme triangle

Volume 3 size 0.7 #Set an interval size

Mesh Surface all #First mesh the surfaces

Smooth Surface all #Scheme Triangle often requires smoothing

Mesh Volume 3 #Mesh the volume

Export Genesis'Octant.gen’ # Write out the mesh
v Box Beam

A simple example using CUBIT is the box beam buckling problem shown in Figure A-4. A
description of an analysis which uses this type of mesh is found in [15]. This example uses the
merge, nodeset and block commands and the mapping mesh generation scheme. The
geometry is generated inside of CUBIT using Aprepro commands and variables. The geometry
file is as follows:

File: boxBeamGeom.jou

Side = {Side = 1.75}

Height = {Height = 12.0}

Upper = {Upper = 2.0}

Brick Width {Side/2.0} depth {Side/2.0} height {Height-Upper}
Body 1 name “lowerSection”

Brick Width {Side/2.0} depth {Side/2.0} height {Upper}

Body 2 name “upperSection”

Moi/e lowerSection xyz {Side/4.0} {Side/4.0} {(Height-Upper)/
2.0

Move upperSection xyz {Side/4.0} {Side/4.0} {Upper/2.0 + Height

190 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX / \. Examples

Figure A-3: Mesh for Octant of Sphere via Coring/Sweeping (left) and the Tetrahedron
Primitive (Right)

Figure A-4: Box Beam example

- Upper}
Export acis “boxBeam.sat” #Save the file to SAT

In this example, it is assumed that subsequent analyses will take advantage of the problem
symmetry and therefore only one-quarter of the box beam will be meshed. It is worth noting that

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl91

APPENDIX / \. Examples

there are a variety of ways to construct a solid model for this problem; however, experience thus
far with ACIS and CUBIT indicates that the easiest way to model the box beam is to use ACIS
block primitives.. Even though subsequent meshing will only be performed on the faces of the
solid model, the entire 3D body is saved as an ACIS.sat file. The CUBIT journal file for the box
beam example is:

File: boxBeam.jou

Thickness = {Thickness = 0.06}
Crease = {Crease = 0.01}

XYInts = {XYInts = 10}

ZInts = {ZInts = 90}

Upperlints = {Upperints = 15}

Import Acis 'boxBeam.sat’

Merge All

Label Surface on
Label Curve on
Display

Curve 1 To 8 Interval {XYInts}
Curve 13 To 16 Interval {XYInts}

Curve 9 To 12 Interval {ZInts-Upperints}
Curve 21 To 24 Interval {Upperints}

Mesh Surface 3
Mesh Surface 6
Mesh Surface 9
Mesh Surface 12

NodeSet 1 Curve 1
NodeSet 2 Curve 4

NodeSet 1 Move {-Crease} 0 0
NodeSet 2 Move 0 {Crease} 0

Block 2 Surface 3
Block 2 Surface 6

Block 1 Surface 9
Block 1 Surface 12

Block 1 To 2 Attribute {Thickness}

Export Genesis 'boxBeam.exoll’
Quit

Commands worth noting in the CUBIT journal file include:

* Block, Block Attribute Allows the user to specify that shell elements for the
surfaces of the solid model are to be written to the output (EXODUSII) database,
and that shell elements be given a thickness attribute. This is necessary since
CUBIT defaults to three-dimensional hexahedral meshing of solid model vol-
umes.

* NodeSet Move Allows the user to actually move the specified nodes by a vec-
tor (Ax, Ay, Az). This is advantageous for the buckling problem, since the numer-
ical simulation requires a small “crease” in the beam in order to perform well.

1. This geometry can also be generated using the internal CUBIT Brick primitive.

192 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX / \. Examples

Merge Allows the user to combine geometric features (e.g. edges and surfaces).

Other commands in the journal file should be straightforward. Since the problem is sufficiently
simple to mesh using a mapping transformation, specification of a meshing “scheme” is
unnecessary (mapping is the default in CUBIT).

Finally, note that both the CUBIT journal filebgxBeamGeom.jou and boxBeam.jou)
contain macros that are evaluated using Aprepro. mhkefileis used to semi-automatically
generate the mesh is given below:

File: Makefile

boxBeam.g:boxBeam.exoll
ex2exlv2 boxBeam.exoll boxBeam.g

boxBeam.exoll:boxBeam.sat boxBeam.jou
cubit -batch -nographics boxBeam.jou

boxBeam.sat: boxBeamGeom.jou
cubit -batch -nographics boxBeamGeom.jou

boxBeam.jou: boxBeam.jou

clean:
@-rm *.sat *.exoll *.g

While this particular example is a trivial use of the software, it does serve to demonstrate a few
of the capabilities offered by CUBIT.

v Thunderbird 3D Shell

This example is the three-dimensional paving of a shell shown in Figure A-5. The 2D wireframe
geometry of the thunderbird is given by the following FASTQ file:

Document Version 4/18/00

#File: tbird.fsq
TITLE
MESH OF SANDIA THUNDERBIRD

$ block {e = .2} int={isq = 20}

$ number of elements in block thick {iblk t =51} block thickness
{blkt=.2 }

$ block angle {angle=15}

$ magnification factor = {magnificationFactor=1.0}

$ bird {bthick = .018} {ithick = 3} {idepth = 20}

$ {pi = 3.14159265359} {rad=magnificationFactor/pi} {bdepth=1.}
$ preferred normalized element size = {elementSize=0.06}

$ number of intervals along outside edges =

$ {border_int=5} {corner_int=10} {side_int=20}

$ {outsidelntervals= 2*corner_int+side_int}

$ {boxTop=.2} {topIntervals = 8}

$ {insideCurvelnt=8}

$ {MAG=magnificationFactor/3.0}

$ {middleInside=MAG*0.97}

$ {xCurveStartinside=MAG*0.60}
$ {yCurveStartinside=MAG*0.93}
$ {curveMiddlelnside=MAG*0.81}

$ {xCurveStartOutside=MAG*0.75}
$ {yCurveStartOutside=MAG*1.17}
$ {middleOutside=MAG*1.20}

$ {curveMiddleOutside=MAG*1.01}
$ {boundingBox = MAG*1.5}

CUBIT Version 4.0 Reference Manudl93

APPENDIX /—\.

Examples

Figure A-5: Sandia Thunderbird 3D shell

$ Thunderbird Coordinates

POINT 1 {MAG*-.40} {MAG*.78}
POINT 2 {MAG*-.40} {MAG*.59}
POINT 3 {MAG*-.22} {MAG*.59}
POINT 4 {MAG*-.22} {MAG*.40}
POINT 5 {MAG*-.75} {MAG*.40}
POINT 6 {MAG*-.78} {MAG*-.09}
POINT 7 {MAG*-.75} {MAG*-.58}
POINT 8 {MAG*-.53} {MAG*-.60}
POINT 9 {MAG*-.54} {MAG*-.23}

POINT 10
POINT 11
POINT 12
POINT 13
POINT 14
POINT 15
POINT 16
POINT 17
POINT 18
POINT 19
POINT 20
POINT 21
POINT 22
POINT 23
POINT 24
POINT 25

MAG*-.42} {MAG*- 23}
MAG*-.42} {MAG*.07}
MAG*-.24} {MAG*.07}
MAG*-.27} {MAG*-.80}
MAG*.27} {MAG*-.80}
MAG*.24} {MAG*.07}
MAG*.42} {MAG*.07}
MAG*.42} {MAG*-.23}
MAG*.54} {MAG*-.23}
MAG*.53} {MAG*-.60}
MAG*.75} {MAG*-.58}
MAG*.78} {MAG*-.09}
MAG*.75} {MAG*.40}
MAG*.22} {MAG*.40}
MAG*.21} {MAG*.78}
MAG*0.0} {MAG*.80}

$ lines for Third

LINE1STR12

194 CUBIT Version 4.0 Reference Manual

Document Version 4/18/00

APPENDIX / \. Examples

LINE2STR 23
LINE3 STR 34
LINE4 STR 45
LINE5CIRM576
LINE6 STR 78
LINE7 STR 89
LINE 8 STR 9 10
LINE9 STR 10 11
LINE 10 STR 11 12
LINE 11 STR 12 13
LINE 12 STR 13 14
LINE 13 STR 14 15
LINE 14 STR 15 16
LINE 15 STR 16 17
LINE 16 STR 17 18
LINE 17 STR 18 19
LINE 18 STR 19 20
LINE 19 CIRM 20 22 21
LINE 20 STR 22 23
LINE 21 STR 23 24
LINE22STR241071.0

$ REGIONS
SIZE {elementSize*MAG}

REGION11-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15*
-16 -17 -18 -19 -20 -21 -22

SCHEME 0 X
BODY 1
EXIT

A command interpreter has been developed inside CUBIT to convert FASTQ geometry into
CUBIT's modeling system (ACIS). The previous file, third.fsq, can be read into CUBIT by the
command:

Import Fastq “<file_name>"

The file can be read into CUBIT and converted from a 2D “sheet” body to a 3D solid, by the
following commands:

#File: tbird3dGeom.jou

import fastq “tbird.fsq”

cylinder radius.5 height 1.25

rotate body 2 about x angle 90

sweep surface 1 vector 0 0 1 distance 1

intersect body 3 with body 2
export acis “tbird3d.sat”

This example shows a powerful technique of generating two dimensional surfaces through
FASTQ or through CUBIT’s own bottom up geometry creation, and then sweeping them into
three dimensional shapes.

In this example, only the 3D shell of the thunderbird is desired for the finite element model, and
thus, the block command is used to specify that only elements on the surface are to be created.
The following CUBIT journal file demonstrates current 3D paving capability:

#File: tbird3d.jou

Import Acis 'third3d.sat’

#You may want to move the view around by mousing in the Graphics
#window to get a better idea of the 3D shaped surface.

Label Surface on

Display

Draw Surface 23

Document Version 4/18/00 CUBIT Version 4.0 Reference Manudl95

APPENDIX / \. Examples

Draw Surface 24

Surface 24 Size 0.03

Surface 24 Scheme Pave

Mesh Surface 24

#Show the quality of mesh measured by skew (note the scale)
Quality surface 24 draw mesh skew

Block 1 Surface 24
Block 1 Attribute 0.03
Export Genesis “tbird.g2”

v Advanced Tutorial

The objective of this example is to illustrate the use of some advanced meshing operations to
mesh a more complex geometry. The example purposely does not do everything right the first
time to demonstrate the thought process a user would go through when meshing a real part for
the first time. This example demonstrates the usevelbcut to decompose the model into
sweepable volumes, manually settimgshing schemesvhenscheme autofails for certain
volumes andnatching intervals to ensure meshing scheme constraints are meet. It should be
noted that the sequence of commands is important to successfully generate the meshed model.
It is recommended that the user first perform all the decomposition on the modeiimiteémt

the entire model. Imprinting ensures that the topology of adjacent bodies match so that correct
merging of adjacent surfaces can be performed. Next, use the merge all command to merge the
common surfaces and ensure a contiguous mesh throughout the model. It is important to watch
the merge all command output, since during typioarge all operations, all of the curves and
vertices will be merged during the surface merging. Thus unless specifically desired, curve and
vertex merging messages should not be seen from this command. If these are reported during
the execution of the command, it may indicate invalid topology (remedied byt all) or

some other invalidity in the model. Performing iamprint all after themerge allmay corrupt

the data base; the user should not perform geometry operations aftegtipecommand. Next,

set the element size (explume all size 19 then the meshing schema (evglume all scheme

auto). The regime is finished when the mesh command is issued. Setting up B&eaanent

Blocks are not covered in this tutorial.

The command set default names on assigns names to the geometric entities. These names are
saved with the geometry when the file is saved and also remain constant within code revisions.
Throughout the session, each entity will acquire multiple names and any name given for each
entity is valid for identification.

The ACIS SAT file for this tutorial can be obtained via the Cubit website at:

http://endo.sandia.gov/cubit/turorial_files.html

The geometry used in this example is shown in Figure A-6. The journal file for this exercise is
given below as follows. The resulting mesh is shown in Figure A-7.

Turn on the default names so when the file is read in,

the entities will be named.

Assign names to geometric entities such as curOl, surflO,
etc.

read in the file

Some default names have already been set in the sat file.

Turn on default names after the original has been read in

so only entities created after the import can be read.

import acis “advanced_demo.sat”

196 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

Document Version 4/18/00

APPENDIX / \. Examples

Figure A-6: Geometry of Advanced Tutorial

Set a better graphics mode for viewing.

graphics mode smoothshade

Look at each body to get a feel for what needs to occur.
draw body 1

draw body 2

draw body 3

Make sure we do fast imprinting.

set group imprint on

set body 1 as the only visible entity for better

visualization of subsequent decomposition

body all visibility off

body 1 visibility on

display

the geometry must be decomposed into sweepable volumes
webcut body all plane surl0

webcut bod1@A with sheet extended from surl4

turn the visibility back on

body all vis on

center of cylinder is at origin.

Core out the center of the half sphere,

and include the block imprint inside the core.

rad 60 was a guess but the user can also use existing curves
to estimate the radius required to core the center.

NOTE: “WARNING: entity ignored ... cutting tool does not”
will appear. This is just information to the user that not

all the bodies were intersected with the cylinder

webcut body all cylinder radius 60 axis y

now cut in half to rotate the sphere portion. the mesh can
only be rotated 180 degrees so it has to be cut in half.
webcut body all plane xplane

now we want 1 volume per body; currently one body has two
volumes.

separate body all

##turn off graphics to run faster

graphics off

imprints the profile of mating or contacting surfaces onto

CUBIT Version 4.0 Reference Manudl97

APPENDIX / \. Examples

each other.compress ids renumbers the entities starting at 1
imprint all

graphics on

set the element edge size for all the volumes and

Automatically select the meshing scheme for all volumes

vol all size 15

vol all scheme auto

After inspection, the 4 volumes that couldn't be meshed, just
need help with setting the correct surface schemes.

surface 190 198 name 'submap_surfs’

surf 343 348 name 'map_surfs’

submap_surfs submap_surfs@A scheme submap

map_surfs map_surfs@A scheme map

Try auto scheme again to be sure.

vol all scheme auto

So one would think we are ready to mesh.

Lets save where we are.

export acis "advanced_temp.sat"

But first we need to check to make sure the collection can be
meshed.

We need to do a merge all first.

merge all

Note that no curves or vertices were merged seperatly so

merging was done successfully.

Redo the auto scheme because some of the entities were

deleted in the merge.

vol all scheme default

vol all scheme auto

Oops. (;-0)Given the other volumes meshing constraints, we

are left with a collection of volumes that need to be many to
many sweept(will be in future releases),

which we need to decompose.

While only one volume is reported, the other mirroring this

ones also need to be decomposed.

Here are the bodies that need further decomp.bod10 andbod108
Lets reset, to get rid of the merged entities, and read in

that file that we saved. Decomposing merged entities would

cause data base problems...

reset

Everything is named, and we don’t need to keep naming

set default names off

There will be lots of “Entity name” print statements that you
can ignore.

import acis "advanced_temp.sat"

Lets decompose those two bodies.

bod2 and bod2@A. the "{ld(“group”)}" is an APREPRO command
which is acceptable in CUBIT

Decompose and group the results into a group.

webcut bod2 plane sur27 group_results

This command names the group previous created

group {ld(“group”)} name “right_s”

webcut bod2@A plane sur31 group_results

group {ld(“group”)} name “left_s”

Now we still wouldn’t be able to mesh. sweep grouping would
show a problem. Rotating the mesh around with having

the many to one sweeps would cause mesh matching problems.
Esentially with the collection of volumes here we have a

many to many sweep. So really we need to get each volume

in the right_s and left_s groups to be 1 to 1 sweeps to get

the mesh to match correctly.

webcut right_s plane sur25 group_results

webcut left_s plane sur30 group_results

now chop the top part of both the right_s and left_s sides

This is further needed to get the group to be sweepable.

Doing this will generate a separte sweep path.

group "rounds" equals body all in group 4 5

webcut rounds plane sur32 noi nom group_results

So lets do a final imprint.

graphics off

imprint all

At this point you could merge all, set a size, do auto scheme
and group sweep volumes and find out that everything is

198 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX / \. Examples

##meshable,with the exception of those surfaces we need to hand
set the chemes on.

export acis "advanced-decomp.sat”

reset

graphics on

Now the meshing part.

import acis "advanced-decomp.sat”

merge all

#The 4 surfaces that had names were merged into two surfaces.
group 'maps’ equals surface name 'map_surfs’

#oops that got both.

group 'submaps’ equals surface name 'submap_surfs’

group 'maps’ subtract submaps from maps

surface all in submaps scheme submap

surface all in maps scheme map

vol all size 15

vol all scheme auto

assign all sweepable surfaces to a group. This ensures that
the sweeping will be done in the proper order so the meshes
will match.

match intervals ensures that adjacent volumes have consistent
intervals.

group sweep volumes

match intervals vol all

First mesh the sweep groups.

Figure A-7: Mesh of Advanced Tutorial Problem

Document Version 4/18/00

mesh sweep_groups

Now mesh the volumes that are mappable or submappable.
mesh vol all

#Now fix up the mesh to make it nicer.

delete mesh

#improve the mesh by doing two things:

#1) change the intervals to remove skew

#2) use the boundary adjuster to improve it.

curve 455 int 10

#After changing intervals, you need to resolve the interval

CUBIT Version 4.0 Reference Manudl99

APPENDIX / \. Examples

#solution.

match int vol all

mesh surf 67 77 146 191

#straighten the skew on this surface first

adjust boundary surface 67

#now make the nodes immovable to adjust the mesh on the next
surface

#without this it might undo our last adjustment

surf 67 node position fixed

#now fix the skew on the next surface.

adjust boundary surf 77

#The other two surfaces are a little different.

#The optimal way to releive skew would be to do more
#decomposition.

#We don't want

adjust boundary surf 191

mesh sweep_groups

mesh vol all

Now lets look at quality.

The main thing to look for are 1: No negative Jacobains
2: No skew near 1.0

quality volume all

Now take a look at the interior:

body 21 232516 53 4 11 27 29 13 15 31 vis off

display

To show only exterior faces and not geometry do this:
(this generally gives better pictures)

graphics use facets on

v Exodusll File Specification

Element Block Definition Examples
Multiple Element Blocks

Multiple element blocks are often used when generating a finite element mesh. For example if
the finite element model consists of a block which has a thin shell encasing the volume mesh,
the following block commands would be used:

Block 100 Volume 1

Block 100 Element Type Hex8

Block 200 Surface 1 To 6

Block 200 Element Type Shell4

Block 200 Attribute 0.01

Mesh Volume 1
Export Genesis ‘block.g’

This sequence of commands defines two element blocks (100 and 200). Element block 100 is
composed of 8-node hexahedral elements and element block 200 is composed of 4-node shell
elements on the surface of the block. The “thickness” of the shell elements is 0.01. The finite
element code which reads the Genesis file (block.g) would refer to these blocks using the
element block IDs 100 and 200. Note that the second line and the fourth line of the example are
not required since both commands represent the default element type for the respective element
blocks.

Surface Mesh Only

If a mesh containing only the surface of the block is desired, the first two lines of the example
would be omitted and th&esh Volume 1 line would be changed to, for exampldesh
Surface 1 To 6.

200 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER

Two-Dimensional Mesh

CUBIT also provides the capability of writing two-dimensional Genesis databases similar to
FASTQ. The usemustfirst assign the appropriate surfaces in the model to an element block.
Then aQuad* type element may be specified for the element block. For example

Block 1 Surface 1 To 4

Block 1 Element Type Quad4
In this case, it is important for users to note that a two-dimensional Genesis database will result.
In writing a two-dimensional Genesis database, CUBghores all z-coordinate data.
Therefore, the user must ensure that the Element Block is assigned to a planar surface lying in
a plane parallel to the x-y plane. Currently, fQead* element types are the only supported
two-dimensional elements. Two-dimensional shell elements will be added in the near future if
required.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manu201

CHAPTER

202 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

-E’Tﬂ'
Appendix B: Available Colors

All color commands in CUBIT require the specification of a color name; Table B-1 lists the
colors available in CUBIT at this time. Table B-1 lists the color number (#), color name, and the
red, green, and blue components corresponding to each color, for reference.

Table B-1: Available Colors Table B-1: Available Colors
Color Name Red G:]ee Blue # Color Name Red G:}ee Blue
0 | black 0.000{ 0.000f 0.000 19| lightsalmon 1.000 0.627 0.478
1| grey 0.500| 0.500| 0.500 20 | springgreen 0.000 1.00(0.498
2 | green 0.000 1.000, 0.000 21| slateblue 0.416 0.353 0.804
3 | yellow 1.000| 1.000(0.000 22 | sienna 0.6271 0.322 0.176
4 | red 1.000{ 0.000(0.000 23| seagreen 0.18p 0.545 0.341
5 | magenta 1.000 0.00Q 1.000 24 | deepskyblue 0.000 0.749 1.000
6 | cyan 0.000| 1.000{ 1.000 25| khaki 0.941(0.902| 0.549
7 | blue 0.000{ 0.000f 1.000 26 | lightskyblue 0.529 0.808 0.980
8 | white 1.000{ 1.000{ 1.000 27 | turquoise 0.251 0.874 0.816
9 | orange 1.000 0.647, 0.000 28 | greenyellow 0.678 1.000 0.184
10 | brown 0.647| 0.165| 0.165 29 | powderblue 0.690 0.87§ 0.902
11 | gold 1.000| 0.843| 0.000 30 | mediumturquoise 0.282 0.820 0.800
12 | lightblue 0.678| 0.847| 0.902 31 | skyblue 0.529 0.808 0.922
13 | lightgreen 0.000 0.800 0.000 32| tomato 1.000 0.388 0.278
14 | salmon 0.980 0.502 0.447 33| lightcyan 0.878, 1.000, 1.000
15 | coral 1.000, 0.498| 0.314 34| dodgerblue 0.118 0.564 1.000
16 | pink 1.000| 0.753| 0.796 35| aquamarine 0.498 1.000 0.831
17 | purple 0.627| 0.125| 0.941 36 | lightgoldenrodyellow| 0.980 0.980 0.824
18 | paleturquoise 0.686 0.933 0.933 37 | darkgreen 0.000 0.392 0.000

Document Version 4/18/00 CUBIT Version 4.0 Reference Manu203

APPENDIX B Available Colors

Table B-1: Available Colors

Table B-1: Available Colors

Color Name Red G;ee Blue # Color Name Red G:]ee Blue
38 | lightcoral 0.941] 0.502| 0.502 60 | orangered 1.000 0.271 0.000
39 | mediumslateblue 0.482 0.408B 0.933 61 | palevioletred 0.859 0.439 0.576
40 | lightseagreen 0.125 0.698 0.667 62 | limegreen 0.19 0.804 0.196
41 | goldenrod 0.855 0.647 0.125 63| mediumblue 0.000 0.000 0.804
42 | indianred 0.804 0.361 0.361 64 | blueviolet 0.541f 0.169] 0.886
43 | mediumspringgreen 0.000 0.980 0.604 65 | deeppink 1.000 0.079 0.576
44 | darkturquoise 0.000 0.808 0.820 66 | beige 0.961 0.961 0.863
45 | yellowgreen 0.604 0.804 0.196 67 | royalblue 0.255 0.4120 0.882
46 | chocolate 0.824 0.412 0.118 68 | darkkhaki 0.7413 0.718 0.420
47 | steelblue 0.27% 0.510 0.706 69 | lawngreen 0.486 0.98§ 0.000
48 | burlywood 0.871 0.722] 0.529 70| lightgoldenrod 0.933 0.867 0.510
49 | hotpink 1.000; 0.412(0.706 71| plum 0.867(0.627| 0.867
50 | saddlebrown 0.545 0.271 0.075 72 | sandybrown 0.957 0.643 0.376
51 | violet 0.933| 0.510| 0.933 73| lightslateblue 0.518 0.439 1.000
52 | tan 0.824| 0.706| 0.549 74| orchid 0.855| 0.439| 0.839
53 | mediumseagreen 0.235 0.702 0.443 75| cadetblue 0.373 0.620 0.627
54 | thistle 0.847) 0.749| 0.847 76| peru 0.804] 0.522] 0.247
55 | palegoldenrod 0.938 0.910 0.667 77 | olivedrab 0.420 0.557| 0.137
56 | firebrick 0.698| 0.133| 0.133 78 | mediumpurple 0.576 0.439 0.859
57 | palegreen 0.596 0.984 0.596 79| maroon 0.690 0.185 0.376
58 | lightyellow 1.000| 1.000| 0.878 80 | lightpink 1.000| 0.714| 0.757
59 | darksalmon 0.914 0.58 0.478 81 | darkslateblue 0.282 0.239 0.545
82 | rosybrown 0.737 0.561 0.561
83 | mediumvioletred 0.780 0.082 0.522
84 | lightsteelblue 0.690 0.769 0.871
85 | mediumaguamarine 0.400 0.804 0.667

204

CUBIT Version 4.0 Reference Manual

Document Version 4/18/00

CHAPTER

Document Version 4/18/00 CUBIT Version 4.0 Reference Manu205

CHAPTER

206 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

gl

Appendix C: CcuBIT Licensing,

Distribution and Installation

1.
2.
3.

The CUBIT code is available for use by personnel inside Sandia, any other government
laboratory, or to personnel performing work under contract by a US government entity. In

addition, CUBIT can be licensed for non-commercial and research use. For more information
on licensing of CUBIT, see the CUBIT web page (http://fendo.sandia.gov/cubit) or send email
to cubit-dev@sandia.gov.

Note: CUBIT installations have use restrictions. THE CUBIT CODE CANNOT BE
COPIED TO ANOTHER COMPUTER AND THE NUMBER OF USER SEATS ON
EACH COMPUTER OR LAN IS LIMITED. If additional user seats or additional
copies of CUBIT are required, you MUST contact us to acquire them.

CUBIT incorporates code modules developed by outside code vendors and licensed to the
CUBIT project. Since the number of licenses for these modules is limited, CUBIT cannot be
copied and redistributed without notifying the CUBIT team.

CUBIT is distributed in statically linked executable form for each supported platform.
Supported platforms include the HP 9000 series running HP;8¥n SPARCstations running
Solari¢, and the SGI running IRIX Additional platforms will be added as required; in
particular, a port to Windows NT is underway and should be ready shortly.

Instructions for obtaining the CUBIT code will be given after licensing arrangements have been
completed.

In addition to the CUBIT executable, the suite of example problems described in this manual is
available upon request.

HP-UX s aregistered trademark of Hewlett-Packard Company.
Sun, SunOS, and Solaris are registered trademarks of Sun Microsystems, Inc.
IRIXis a registered trademark of Silicon Graphics, Inc.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manu207

APPENDIX C CUBIT Licensing, Distribution and Installation

208 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX C CUBIT Licensing, Distribution and Installation

Document Version 4/18/00 CUBIT Version 4.0 Reference Manu209

APPENDIX C CUBIT Licensing, Distribution and Installation

210 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX C CUBIT Licensing, Distribution and Installation

Document Version 4/18/00 CUBIT Version 4.0 Reference Manu211

g1
Appendix D: Element Numbering

v Introduction...213
v Node Numbering...213
v Side Numbering...213

v Introduction

This appendix describes the element node and side numbering conventions used in Exodusll

files written by CUBIT. This information is located here for convenience, but is identical to the
information presented in [6].

v Node Numbering

The node numbering used for the basic elements is shown in Figure D-1. Specific element types
of lower order just contain the number of nodes needed for those elements; for example,
QUAD4 or QUAD elements use just the first four nodes shown for quadrilaterals in Figure D-1.

Truss, Beam, Quadrilateral, Hexahedral
8 19 7
P 3
8 6
1 % % %

Shell (2D) Shell (3D)
Figure D-1: Local Node Numbering for CUBIT Element Types

v Side Numbering

Element sides are used to specify boundary conditions that act over a length or area, for example
pressure- or flux-type boundary conditions. Each element side is represented in the Exodusl|

format by an element number and the local side number for that element. The local side
numbering for the basic elements is shown in Figure D-2.

Document Version 4/18/00 CUBIT Version 4.0 Reference Manu213

APPENDIX D Element Numbering

Quadrilateral, Hexahedral
8 19 7
3
4 2
1 1 2

Shell (3D)
Figure D-2: Local Side Numbering for CUBIT Element Types

214 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

g1
Appendix E: Adaptive Meshing '

v Introduction...215

v Introduction

CUBIT contains a sophisticated adaptive mesh generation capability for surfaces. This alloys
the generation of an unstructured quadrilateral surface mesh whose density is controlled by pn
externally-defined sizing function. This capability has been used to demonstrate adaptive finife
element analysis for structural mechanics applications (ref).

Document Version 4/18/00 CUBIT Version 4.0 Reference Manu215

APPENDIX E Adaptive Meshing

216 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER

E

Element Blocks. Element Blocks (also referred to as simply, Blocks) are a logical grouping of el-
ements all having the same basic geometry and number of nodes. 179

N

Nodeset. Nodesets are a logical grouping of nodes also accessed through a single ID known as the
Nodeset ID. 180

S

Sideset. Sidesets represent a grouping of element sides and are also referenced using an integer
Sideset ID. 180

Document Version 4/18/00 CUBIT Version 3.0 Reference Manu217

CHAPTER

218 CUBIT Version 3.0 Reference Manual Document Version 4/18/00

CHAPTER

Appendix F: index

Symbols

$HOME/.cubit 4, 5, 21, 22
.cubit 4, 5, 21, 22

A

Angle
Perspective 42
Aprepro 193
At 42
Attribute
Block 181

B

-batch 4, 21
Block 192
Attribute 181
Curve 181
Element Type 181
Surface 181
Volume 181
Body
Copy 69
List 51
Move 70
Reflect 71
Restore 71
Rotate 70
Scale 70
Booleans 71
Intersect 71, 190
Subtract 72, 188, 189, 190
Unite 72
Boundary Condition 180
SideSet 180
Brick 63, 188, 190

C

Color

Document Version 4/18/00 CUBIT Version 3.0 Reference Manu219

CHAPTER

Table 203
Command Line
Echo 23
Copy 190
Body 69
Create
Brick 63
Cylinder 63, 64
Frustum 63, 64
Prism 63, 64
Pyramid 63, 64
Sphere 63, 65
Torus 63, 65
Cube with Hole 8, 188
CUBIT_OPT 5, 22
Cursor
Zoom 43
Curve 181
Block 181
List 51
NodeSet 182
Reverse Bias 122
SideSet 182
Cylinder 63, 64, 188, 190

D

Debug 52
-debug 5, 22, 53
Decomposition 73

E

Echo 23
Editing
Mesh 161
Element Block 179
Element Type 115
Block 181
Environment Variable
CUBIT_OPT 5, 22
Equipotential 164
Error 52
Example
Box Beam 190

220 CUBIT Version 3.0 Reference Manual

Document Version 4/18/00

CHAPTER

Cube with Hole 8, 188
Octant of Sphere 190
Thunderbird 3D Shell 193
Execution Options
-batch 4, 21
-debug 5, 22, 53
-fastq 5, 22
-help 4, 21
-Include 5, 22
-information 5, 22, 53
-initfile 4, 5, 21, 22
-maxjournal 4, 21
-noinitfile 4, 21
-nojournal 5, 22, 24
-solidmodel 4, 21
-warning 5, 22, 53
Exit 23
Exodus 179
Exodusll 168

F

Face
List 51
False (toggle) 20
FASTQ 2, 66
-fastq 5, 22
Filename 20
Files
$HOME/.cubit 4, 5, 21, 22
Exodus 179
Exodusll 168
Genesis 179
From 42
Frustum 63, 64

G

Genesis 179
Geometry
Booleans 71
Decomposition 73
Manipulation 69
Merge 190, 193
Primitives 63

Document Version 4/18/00 CUBIT Version 3.0 Reference Manu221

CHAPTER

Graphics
Line Width 45
Perspective
Angle 42
Rotate 42
Zoom 43
Cursor 43
Reset 43
Screen 43
GUI 19

H

Hardcopy 45
-help 4, 21
Hex

List 51

-Include 5, 22
Information 52
-information 5, 22, 53
-initfile 4, 5, 21, 22
Initialization File 4, 21
Intersect 71, 190

J

Journal
Playback 23
Record 23
Journal Off 4, 5, 21, 22, 24
-journalfile
Execution Options
-journalfile 4, 21

L

Line Width 45
List 50
Body 51
Curve 51
Face 51
Hex 51

222 CUBIT Version 3.0 Reference Manual

Document Version 4/18/00

Nodes 51
Settings 53
Surface 51
Vertex 51
Volume 51

M

CHAPTER

makefile 193
-maxjournal 4, 21
Merge 190, 193
All 80
Mesh
Editing 161
Messages
Debug 52
Error 52
Information 52
Warning 52
Model
attributes 3
Move
Body 70
NodeSet 167

N

No (toggle) 20
Node
List 51
Repositioning 167
NodeSet
Curve 182
Move 167, 192
Surface 182
Vertex 182
Volume 182
-noinitfile 4, 21
-nojournal 5, 22, 24

O

Octant of Sphere 190
Off (toggle) 20
On (toggle) 20

Document Version 4/18/00

CUBIT Version 3.0 Reference Manu223

CHAPTER

Output
PICT 45
PostScript 45

P

Parameter 20
Optional 21
Pave 188, 190
Perspective
Angle 42
PICT 45
Plaster
Volume Scheme 136
Playback 23
PostScript 45
Primitives
Brick 63
Cylinder 63, 64
Frustum 63, 64
Geometry 63
Prism 63, 64
Pyramid 63, 64
Sphere 63, 65
Torus 63, 65
Prism 63, 64
Project 190
Volume Scheme 143
Pyramid 63, 64

Q

Quit 23

R

Record 23
Stop 23
Reflect
Body 71
Repositioning
Node 167
Reset 23
Zoom 43
Restore

224 CUBIT Version 3.0 Reference Manual

Document Version 4/18/00

Body 71
Reverse Bias 122
Rotate 42, 190

Body 70

S

CHAPTER

Scale
Body 70
Scheme
Plaster 136
Project 143
Triangle 152
Settings
List 53
SideSet 180
Curve 182
Surface 182
-solidmodel 4, 21
Sphere 63, 65, 190
String 20
Subtract 72, 188, 189, 190
Surface 181
Block 181
List 51
NodeSet 182
SideSet 182

T

Thunderbird 3D Shell 193
Title 183

Toggle 20

Torus 63, 65

Translate 188

Triangle 152

True (toggle) 20

U

Unite 72
Up 42
User interface 19

Document Version 4/18/00

CUBIT Version 3.0 Reference Manu@25

CHAPTER

Vv

Version 23
Vertex
List 51
NodeSet 182
View
At 42
From 42
Up 42
Volume 181
Block 181
List 51
NodeSet 182
Scheme
Plaster 136
Project 143

w

Warning 52
-warning 5, 22, 53

Y

Yes (toggle) 20

Z

Zoom 43
Cursor 43
Reset 43
Screen 43

226 CUBIT Version 3.0 Reference Manual

Document Version 4/18/00

MS-0847Distribution:

MS-0321 W. J. Camp, 9200
MS-0841 P.J. Hommert, 9100
9200, All managers (please route to
staff)

9100, All managers (please route to

staff)

MS-0865 J. L. Moya, 9735
MS-0624 C. A. Neugebauer, 2984
MS-0625 L. K. Grube, 2983
MS-0105 A. J. Webb, 2435
MS-9042 E. P. Chen, 8742
MS-0437 J. Jung, 9135
MS-0828 L. A. Schoof, 9121
MS-0828 J. R. Stewart, 9121
MS-0828 J. A. Schutt, 9121
MS-0828 L. M. Taylor, 9121
MS-0847 S. A. Mitchell, 9226
MS-0847 T. J. Tautges, 9226
MS-0847 D. R. White, 9226
MS-0847 P. Knupp, 9226
MS-0847 R. M. Garcia, 9226
MS-0847 D. J. Melander, 9226
MS-0847 L. Freitag, 9226
MS-0437 S. W. Attaway, 9117
MS-0443 C. M. Stone, 9117
MS-0443 G. D. Sjaardema, 9117
MS-0443 J. G. Arguello, 9117
MS-0834 J. B. Aidun, 9117
MS-0443 M. K. Neilsen, 9117
MS-0443 G. W. Wellman, 9117
MS-0443 J. Holland, 9117
MS-0443 K. Brown, 9117
MS-0443 S. W. Key, 9117
MS-0443 J. D. Gruda, 9117
MS-9042 A. M. Schauer, 8742
MS-0521 S. T. Montgomery, 1567
MS-0660 A.L. Ames, 9622
MS-0826 D. K. Gartling, 9111
MS-0826 M. A. Walker, 9111
MS-0826 R. C. Givler, 9111
MS-0826 P.R. Schunk, 9111
MS-0834 P. L. Hopkins, 9112
MS-0835 R. J. Cochran, 9113
MS-0835 R. R. Lober, 9113
MS-0835 S. E. Gianoulakis, 9113

MS-0557 T. W. Simmermacher, 9119
MS-1109 C. T. Vaughan, 9226
MS-1111 S. Plimpton, 9221
MS-1111 A. Salinger, 9221
MS-1111 S. Hutchinson, 9221
MS-1111 R. Schmidt, 9221
MS-1111 J. Shadid, 9221
MS-1111 D. Barnette, 9221
MS-0819 M. A. Christon, 9231
MS-0819 E. A. Boucheron, 9231
MS-0819 J. R. Weatherby, 9231
MS-0819 S. Petney, 9231
MS-0819 A. C. Robinson, 9231

MS-0820 A. B. Farnsworth, 9232
MS-1166 D. J. Riley, 9352
MS-1186 M. F. Pasik, 9542
MS-0847 CUBIT Report File

Dr. Steve Benzley & Research Assts.
Associate Dean,

General & Honors Education

350 MSRB

Brigham Young University

Provo, UT 84602

Steve Storm

Caterpillar Inc.

Bldg. AD 3335

600 W. Washington Street

East Peoria, lllinois 61630-3335

Dr. Rajit Gadh

347 Mech. Engr. Bldg
1513 University Ave
Madison, WI 53706

Ray Meyers
301 East 925 North
American Fork, UT 84003

Michael Stephenson
2005 West 1550 North
Provo UT, 84604-2212

April 18, 2000

	CUBIT Mesh Generation Environment Volume 1: Users Manual
	Cubit Development Team Membership
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1: Getting Started
	Introduction
	How to Use This Manual
	Features
	Geometry Creation, Modification and Healing
	Non-Manifold Topology
	Geometry Decomposition
	Mesh Generation
	Boundary Conditions
	Element Types
	Graphics Display Capabilities
	Command Line Interface
	Hardware Platforms

	Executing CUBIT
	Execution Command Syntax
	User Environment Settings
	Initialization File

	CUBIT Mailing Lists
	Problem Reports and Enhancement Requests

	Chapter 2: Tutorial
	Introduction
	Overview
	Step 1: Beginning Execution
	Step 2: Creating the Brick
	Step 3: Creating the Cylinder
	Step 4: Adjusting the Graphics Display
	Step 5: Forming the Hole
	Step 6: Setting Interval Sizes
	Step 7: Surface Meshing
	Step 8: Volume Meshing
	Step 9: Inspecting the Model
	Step 10: Defining Boundary Conditions
	Step 11: Exporting the Mesh
	Congratulations

	Chapter 3: Environment
	Introduction
	Command Syntax
	Executing CUBIT
	Execution Command Syntax
	Environment Variables
	Initialization File

	Session Control
	Command Recording and Playback
	Journal File Creation & Playback
	Automatic Journal File Creation

	Restart
	Entity Specification
	Types of Entity Range Input
	Precedence of “Except” and “In”
	Placement in CUBIT Commands

	Command Line Editing
	Graphics
	Updating the Display
	Graphics Modes
	Drawing and Highlighting Entities
	Mouse-Based View Navigation
	Selecting Entities with the Mouse
	Entity Selection
	Query-Selection
	Multiple Selected Entities
	Picked Group
	Substituting the Selection into Commands

	Mesh Slicing
	Entity Labels
	Colors
	Color Definitions
	Specifying Colors in Commands
	Assigning Colors

	Geometry and Mesh Entity Visibility
	Graphics Camera
	Changing Camera Attributes Using Rotate, Zoom Pan
	Changing Camera Attributes Directly

	Graphics Windows
	Window Size and Position
	Using Multiple Windows

	Hardcopy Output
	Miscellaneous Graphics Options

	Graphics Enhancements
	Entity Parsing

	Listing Information
	List Model Summary
	List Geometry
	List Mesh
	List Special Entities
	List CUBIT Environment
	Message Output Settings
	Graphical Display Information
	Memory Usage Information

	Obtaining Help

	Chapter 4: Geometry
	Introduction
	CUBIT Geometry Model Definitions
	Topology
	Non-Manifold Topology

	Automatic Detail Suppression
	Geometry Creation
	Geometric Primitives
	General Notes
	Brick
	Cylinder
	Prism
	Frustum
	Pyramid
	Sphere
	Torus

	Importing Geometry
	Importing ACIS Models
	Importing FASTQ Models
	Importing ExodusII Files

	Bottom-Up Geometry Creation
	Vertex
	Curve
	Surface
	Volume

	Geometry Transforms
	Align
	Copy
	Move
	Scale
	Rotate
	Reflect
	Restore

	Geometry Booleans
	Imprint
	Intersect
	Section
	Separate
	Subtract
	Unite

	Geometry Decomposition
	Web Cutting
	Webcut Using Planar or Cylindrical Surface
	Webcut with Arbitrary Surface
	Webcut Using Tool Body
	Webcut Options
	General Notes

	Split Periodic

	Virtual Geometry:
	Automatic Geometry Decomposition
	Geometry Merging
	Merging
	Examining Merged Entities
	Merge Tolerance
	Using Geometry Merging to Verify Geometry

	Geometry Groups
	Geometry Attributes
	Entity Names
	Persistent Attributes
	Attribute Behavior
	Attribute Types
	Attribute Commands
	Using CUBIT Attributes

	Exporting Geometry
	New Geometry Commands
	Model Import/Export
	Groups

	Chapter 5: Mesh Generation
	Introduction
	Element Types
	Mesh Generation Process

	Interval Assignment
	Interval Firmness
	Explicit Specification of Intervals
	Automatic Specification of Intervals
	Interval Matching
	Periodic Intervals
	Relative Intervals

	Meshing Schemes
	Bias, Dualbias
	Circle
	Copy
	Curvature
	Dice
	The Simplified Dicer Commands
	Additional Dicing Commands

	Equal
	HexToVoid
	HexTet
	Hole
	Mapping
	Mirror
	Pave
	Pentagon Primitive
	Plastering
	QTri
	Sphere
	Stretch
	Submap
	Sweep
	Many-to-Many, or Multisweeping

	TetMesh, TetINRIA, TetMSC
	Tetrahedron
	THex
	Transition
	Triangle
	Trimap
	TriMesh, TriAdvance, TriMSC
	Tripave
	Whisker Weaving
	Whisker Weaving Basic Commands
	Whisker Weaving Options

	Automatic Scheme Selection
	Notes: Surface Auto Scheme Selection
	Notes: Volume Auto Scheme Selection
	General Notes

	Mesh-Related Topics
	Grouping Sweepable Volumes
	FullHex versus NodeHex Representation
	Surface Vertex Types
	Preview Mesh

	Mesh Smoothing
	Smooth Scheme: Centroid Area Pull
	Smooth Scheme: Equipotential
	Smooth Scheme: Laplacian
	Smooth Scheme: Optimize Area
	Smooth Scheme: Optimize Condition Number
	Smooth Scheme: Optimize Jacobian
	Smooth Scheme: Optimize Untangle
	Smooth Scheme: Randomize
	Smooth Scheme: Winslow

	Mesh Deletion
	Node and NodeSet Repositioning
	Mesh Importing and Duplicating
	Importing mesh from an external file
	Duplicating mesh

	Mesh Quality Assessment
	Metrics for Triangular Elements
	Metrics for Quadrilaterals
	Metrics for Tetrahedral Elements
	Metrics for Hexahedral Elements
	Details on Robinson Metrics for Quadrilaterals
	Command Syntax
	Example Output
	Controlling Mesh Quality

	Mesh Validity

	Chapter 6: Finite Element Model Definition and Output
	Introduction
	Finite Element Model Definition
	Element Blocks
	Nodesets
	Sidesets
	Element Types

	Element Block Specification
	Nodesets and Sidesets
	Nodeset Associativity Data

	ExodusII Model Title
	Transforming Mesh Coordinates
	Exporting the Finite Element Model
	References

	Appendix A: Examples
	Introduction
	General Comments
	Simple Internal Geometry Generation
	Octant of Sphere
	Box Beam
	Thunderbird 3D Shell
	Advanced Tutorial
	ExodusII File Specification
	Element Block Definition Examples
	Multiple Element Blocks

	Appendix B: Available Colors
	Appendix C: CUBIT Licensing, Distribution and Installation
	Appendix D: Element Numbering
	Introduction
	Node Numbering
	Side Numbering

	Appendix E: Adaptive Meshing
	Introduction

	Appendix F: Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

